
Managing self-explaining ambient
applications

Börge Kordts*, Lea C. Brandl and Andreas Schrader

Institute of Telematics, University of Lübeck, Lübeck, Germany

Introduction: The Internet of Things (IoT) plays a crucial role in realizing the vision
of pervasivemcomputing. The variety of devices and services in the IoT often
makes manual integration complex and tedious. To mitigate this challenge, self-
organization has emerged as a promising approach. Furthermore, the concept of
selfexplainability has been proposed to clarify user interactions with dynamically
interconnected smart objects.

Methods: This paper explores related research in the domains of (a) service
composition, (b) self-explainability, and (c) application management within smart
environments. To address existing limitations, we propose a novel application
management concept. Therefore, we extended a framework that utilizes self-
explaining applications to generate user instructions dynamically that explain the
control of these. A user study was conducted to assess the effectiveness and
preferred options of modalities of these instructions.

Results: The findings indicate that the approach successfully tackles the research
question concerning the integration of self-explaining applications into smart
environments.

KEYWORDS

smart object guidance, self-reflection, self-organization, ambient applications,
application management

1 Introduction

Advancements in technology over the past decades allowed for the vision of pervasive
computing to continually pave its way into the reality of people’s lives. Consequently,
people’s everyday tasks and actions are becoming increasingly enriched through access to
digital information that is invisibly surrounding users, but is available when needed.

The Internet of Things (IoT) has the potential to realize this vision of pervasive
computing (Ornes, 2016). By connecting multiple smart objects that are placed inside a
pervasive environment, device ensembles can be formed to extend the abilities of their users
and support them in their everyday lives. These device ensembles can be equipped with
sensors to monitor the environment’s current state, actuators to manipulate the
environment, and interfaces for user interactions. They may be connected via wireless
networks within the Internet of Things. This makes them capable of assisting users with
their tasks and needs.

In this regard, Altakrouri (2014) proposes decoupling input and output capabilities of
smart devices to form dynamic solutions tailored to specific situations, users, as well as their
abilities and preferences. Generally, the author also suggests decoupling interaction to
honor the high level of user mobility, diversity, different contexts, and changing resources.

However, it may be challenging to connect components of smart environments (such as
multiple IoT devices, services, and interfaces) manually, due to the potential complexity of
such systems and the variety of the technology involved. Self-Organization but also

OPEN ACCESS

EDITED BY

Navod Neranjan Thilakarathne,
University of Colombo, Sri Lanka

REVIEWED BY

Zaharaddeen Karami Lawal,
Universiti Brunei Darussalam, Brunei
Nethmini T. Weerawarna,
University of Colombo, Sri Lanka

*CORRESPONDENCE

Börge Kordts,
b.kordts@uni-luebeck.de

RECEIVED 06 May 2025
ACCEPTED 18 July 2025
PUBLISHED 14 August 2025

CITATION

Kordts B, Brandl LC and Schrader A (2025)
Managing self-explaining ambient applications.
Front. Internet Things 4:1623733.
doi: 10.3389/friot.2025.1623733

COPYRIGHT

© 2025 Kordts, Brandl and Schrader. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in The Internet of Things frontiersin.org01

TYPE Original Research
PUBLISHED 14 August 2025
DOI 10.3389/friot.2025.1623733

https://www.frontiersin.org/articles/10.3389/friot.2025.1623733/full
https://www.frontiersin.org/articles/10.3389/friot.2025.1623733/full
https://crossmark.crossref.org/dialog/?doi=10.3389/friot.2025.1623733&domain=pdf&date_stamp=2025-08-14
mailto:b.kordts@uni-luebeck.de
mailto:b.kordts@uni-luebeck.de
https://doi.org/10.3389/friot.2025.1623733
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://www.frontiersin.org/journals/the-internet-of-things#editorial-board
https://doi.org/10.3389/friot.2025.1623733


centralized approaches for an automatic composition have been
researched to provide particularly more comprehensive services
suitable for the user’s tasks and goals (see Section 3).

This directly addresses the need to flexibly provide interaction
components, to enrich the control of output components, and to
deploy new applications within smart environments. Typically, all
these actions should be performed based on certain constraints. For
instance, the use of a certain camera sensor or a display connected to
a device could be required. These components could be modeled
logically as smart objects that provide sensor data or actuators. Some
device types bundle these components so that they are more
practically accessible as a whole. Tablets or smart phones, for
instance, can make use of a specific set of sensors and actuators,
including a camera, an orientation sensor, and a touch-
sensitive display.

In doing so, we are able to create ambient interaction spaces that
offer various interaction options to users to control the surrounding
and applications running within these. Though, the dynamic nature
of these systems may obfuscate not only the interaction between
users and respective systems. More fundamentally, this may have a
negative impact on their understanding of the whole system and its
functionality. Ultimately, this could result in a decreased usability of
such interactive systems.

To counteract this issue, self-explainability has been proposed.
Some solutions are having a particular focus on explaining the
interaction between a user and dynamically connected smart objects.
The concept of self-explainability has been researched in the context
of connected smart objects, services and applications in the IoT
(see Section 3).

This goes hand in hand with the previous argument that the app
concept is in general applicable not only to single devices but also to
entire smart environments. Here, apps, while running on some
computer device connected to the network, are accessible from the
environment and are therefore perceived as if they were running in
the environment (Kubitza, 2017).We refer to applications that make
use of smart objects in some way and that run within smart
environments as Ambient Applications (see Section 2). This term
contrasts with the common usage of ‘apps’, which usually have no
close relationship to the physical environment and generally focus
on graphical output on a rectangular screen.

However, it has not been stated how smart environments are
equipped with these self-explaining applications. In particular, the
term application suggests the existence of an application store and
associated installation mechanism for deployment. Generally, the
metaphor of the app store has been argued to be an attractive idea in
the context of IoT (Stastny et al., 2015). All in all, solutions are
required that can easily provide connected components to meet the
wide range of needs but also explanations as the dynamic nature of
these systems may obstruct the interaction. Yet, current approaches
and existing frameworks towards this end either lack comprehensive
user instructions, do not cover the details of the required interaction,
or need manual setup (see Section 3).

Hence, in this paper, we propose a concept to allow smart
environments to manage self-explaining applications for these smart
environments based on the hardware present in the respective
surroundings. We also present an implementation of this concept
based on the Ambient Reflection framework. The framework is
capable of connecting smart objects and applications based upon

their self-description and further providing instructions or
interactive tutorials for these systems that may guide users.

Our main contributions presented in this paper are:

• A literature overview in the domains of service composition,
self-explainability, and application management,

• A definition for the term Ambient Application,
• A novel application management concept extending the
Ambient Reflection framework allowing to generate user
instructions dynamically,

• A user study that includes participant observation, two
questionnaires, and semi-structured interviews to assess the
effectiveness and preferred options of modalities of these
instructions.

These contributions address the following research questions:

1. How can packaged Ambient Applications be made available
and how can they be brought into the environment?

2. To what extent are generated instructions for dynamically
connected ensembles based upon the components’ self-
descriptions suitable to instruct users about interaction
possibilities provided by the environment?

2 Ambient applications

While smart objects are always physical objects and consist of a
hardware component, most smart environments make use of some
sort of separate software components, e.g., services. Beyond that,
mixed forms and hybrid devices exist that offer complex
functionality, where some devices even offer to install additional
software (sometimes referred to as skills or features). However, the
majority of smart objects available on the market provide relatively
simple input or output functionality which can be used to
implement control systems without complex logic, like lighting
or heating control, for instance.

Moreover, smart environments are typically equipped with
software components that are neither directly bound to physical
devices nor run on smart objects directly. Instead, they run on
computing hardware provided elsewhere in order to realize more
complex application scenarios by means of intermediate logic. In
the literature, this intermediate logic is sometimes referred to as a
service (cf. Goumopoulos and Mavrommati, 2020). However,
when referring to services, the focus is not on the interaction
of a user with a system of smart objects and this intermediary
logic, but is generally aimed at sensor-based control of output
devices typically based on different rule sets. This logic is
therefore executed in the background, as the term service
already suggests.

However, when combining software logic and smart objects with
input and output functionality in the context of human-computer
interaction, the term application comes to mind. A term that is
linked to classic computer systems, in particular desktop systems. It
directly relates to the concept of a user application as an application
that responds to input from a user. If necessary, it forwards output
elsewhere. Hence, we transfer the concept to the domain of smart
environments.

Frontiers in The Internet of Things frontiersin.org02

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


Ambient applications have previously been briefly described as
software components that interact with smart objects within smart
environments (Kordts et al., 2022). Similarly, Kubitza (2017)
describes applications that run in the environment without
explicitly coining a term.

Here, we define the term as follows: ambient applications are
characterized by their close relationship to a smart environment,
whereby they are either controlled by components of the
environment or have output options for controlling other
ambient applications or smart objects. These are pure software
components that have to be executed on some computing
system, but the hardware is in principle interchangeable.

This perspective offers the general possibility of decoupling the
interaction and the application or business logic. If the interfaces are
designed accordingly, applications as well as input and output
devices can be separated and, in principle, combined in different
ways for the respective usage context. This division of components
can take place on both a physical and a logical level.

Ambient Applications may offer interfaces with various
imaginable modalities. These can be graphical in nature, similar
to traditional user interfaces, but can also utilize other approaches.
For example, non-rectangular projections on objects in the
environment or interfaces based on audio, such as voice user
interfaces, are conceivable.

Ambient applications can therefore be differentiated from
common ‘apps’ on the basis of these aspects. They have a
relationship to the physical environment and run in smart
environments or are perceived as such. In addition, common
‘apps’ generally focus on a graphical user interface with
rectangular screens, whereas ambient applications are also
conceivable with other interaction modalities.

3 Related work

Although previous research regarding composition,
explainability, or application deployment has been presented, the
conjunction of these topics entails its own challenges. In the
following, we present related work regarding each of these three
aspects in order to finally discuss research gaps within each of the
respective fields as well as in the overlapping areas.

3.1 Service composition in smart
environments

The aim of software composition is to reuse software modules in
order to reduce the complexity of designs and simplify the
development of software systems. Though, in the context of
smart environments, the actually available components and
devices are often only briefly known before they are actually
used. Therefore, predictions about actually available hardware
and services are challenging. Hence, different approaches are
necessary than in other fields.

Bellavista et al. (2018) describe a service composition
middleware for smart environments that relies on a translucent
composition model. The approach is based on customizable rule sets
and algorithms to solve a constraint satisfaction problem used to

model the composition. Towards this end, a brute-force approach or
backtracking with a heuristic (realized by filter criteria) can be used.
This approach stands in need of users to specify requirements.
However, no deeper understanding of the system and technical
details is required.

Moreover, opportunistic software composition based on
machine learning methods has been proposed. For instance,
Koussaifi et al. (2018) describe a solution for an opportunistic
and automatic service composition using reinforcement learning.
Their approach is based on an assembly engine that discovers
existing components and decides on the connections without
using a pre-established plan. Users are involved in the adaptation
process in order to resolve conflict situations and provide feedback.

Delcourt et al. (2021) present a solution for an automatic and
dynamic software composition allowing for an adaptation to the
current situation and the user. The composition is based on
reinforcement learning without explicit user needs or predefined
assembly plans. Users are given the opportunity to intervene in the
process by accepting, rejecting, or changing proposed solutions prior
to deployment.

Recently, Delcourt et al. (2024) present insights into approaches
to involve users in the machine learning process to build self-
adapting smart environments. This includes guidelines for the
design of such systems. Notably, making clear what the system
can do, how well it performs and how it works are crucial aspects.
Hence, explanations of the system play an important role. Moreover,
the authors integrate these approaches into their case of
opportunistic software composition (see above).

All described systems address the more general problem of
software composition in the context of smart environments.
Although aiming at the involvement of users into the software
composition process, none of the presented approaches explicitly
focuses on the user interaction with the resulting systems. In other
words, there is no special focus on explaining the human-computer
interaction itself, particularly in the sense of involved interaction
techniques. Moreover, there is no emphasis on decoupling input and
output. Though, it has been previously argued that a clearer focus on
the interaction may be beneficial with respect to the composition,
the specification process, or the understandability (Kordts
et al., 2022).

3.2 Self-explainability in smart environments

There is only limited work presented in the literature that
addresses self-explainability in the context of pervasive
computing. Research in that respect primarily focuses on
reasoning about the situation and causes within the self-
adaptation process that led to this state.

For instance, Garcia Dominguez et al. (2019) as well as Parra-
Ullauri et al. (2020) interpret self-explainability as the ability of a
system to answer questions about decisions made in the past. The
authors present an architecture for recording temporal data. This
data can subsequently be used to explain and reason why a system
exhibits its current behavior and which adaptations have been made.
Ultimately, history-awareness makes it possible to analyze the
impact that past history has on the respective decision process
and potentially draw conclusions for future decisions.

Frontiers in The Internet of Things frontiersin.org03

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


Moreover, self-explainability has been proposed to help users
understand the logic of control systems, like in smart environments
(Fadiga et al., 2021). Thereby, users can be put in the position to
better react when needed. The authors present a way to derive causal
models from experiments on the environment and observational
data. These models may be used to explain an adaptive
system’s behavior.

There are also approaches that tackle explaining the behavior of
composed software modules and services for pervasive
environments. Koussaifi et al. (2019) present an architecture that
can be used to generate descriptions of composed systems for smart
environments. For this purpose, generated user-oriented
descriptions mainly consist of rules that explain the components
and the applications. They are based on descriptions of and
connections between the respective components. Beforehand,
developers need to specify descriptions, while the connections are
determined by the service composition.

More closely related, Fey and Drechsler (2020) present a
conceptual framework for self-explainability using a model that is
based on cause-effect chains. These chains are a result of transitively
combined cause-effect relationships. Moreover, the authors propose
a technical solution that allows to infer explanations on the
functional level. Finally, the authors describe a case study of a
robot controller that provides explanations. Since this approach
requires additional code, the authors further discuss the trade-off
between the degree of completeness in explanations and
implementation cost.

Additionally, Fey et al. (2022) propose a conceptual framework
and a generic explanation pattern that can be used to provide self-
adaptive systems with self-explainability. The work is based on
finite-state automata as a means of formalization that can be
used to determine whether an involved entity is in need of an
explanation. These explanations may in turn be used to determine
further actions.

However, it has been argued that current approaches for
explanations are insufficient for most users and that there is a
need for user-centric intelligible explanations. Towards this end,
Sadeghi et al. (2024) present a framework for generating such
explanations for smart environments. Their approach is based on
algorithmic explanation constructs covering facts or events that
describe the logic behind the behavior of a system. In addition, they
include contextual explanation constructs for facts or specifications
that provide information related to this behavior. Cause-effect paths
are then used to reason about the causes for the current state of the
system. Finally, user-centric explanations are generated from these
by determining the best-suited granularity of explanations for the
individual user.

Moreover, King (2024) introduces a framework for smart objects
capable of self-knowledge based on methods from generative
artificial intelligence. A formal model of smart objects’ states
forms the basis of a synthesis of actions and explanations that
yield and describe these states. Towards this end, a teacher large
language model trains small language models suitable for
edge devices.

Notably, most authors focus on explaining the behavior of
software systems in smart environments to users with a
particular focus on reasoning about the actions that led to the
current state. Interactions between a user and the system,

including explicitly intended control actions and the system’s
response, play only a subordinate role. Particularly, interacting
with dynamically connected ensembles is scarcely addressed.

Recently, a system that provides self-explainability for adaptive
systems in smart environments also including Ambient Applications
has been described (Kordts et al., 2022). This work, in turn, is based
on research conducted by Burmeister (2018). The authors focus on
explaining involved components primarily from the perspective of
the interaction while decoupling input and output.

In order to address self-organization and self-explainability for
dynamic ensembles of smart objects and Ambient Applications, the
authors present the Ambient Reflection framework. This framework
consists of three core components. The Smart Object Library can be
used to integrate smart objects or Ambient Applications into the
framework directly. Software components that cannot make use of
the library directly, like web applications, can use the Virtual Device
Daemon (VDD) and the corresponding Virtual Device API. These
components provide a bridge based on a web socket connection in
order to integrate respective applications into the framework.

The third component of the framework is the Description
Mediator which is used to connect smart objects and Ambient
Applications based on their functionality. For this purpose, the
Description Mediator provides a probabilistic brute-force algorithm
as a best-effort approach to the general ensembling problem. It
further provides descriptions of the thereby created ensembles and
informs all involved components about both, the connections and
the combined descriptions. See Figure 1 for an overview of the
framework and its components.

The self-explainability of the framework is based on self-
descriptions of the involved components that are based on a
human- and machine-readable description language for smart
objects and Ambient Applications. Towards this end, descriptions
of applications cover the interfaces with respect to input and output
and basic system behavior. This means that applications are
modeled as black boxes without providing the entire internal
system logic.

Notably, with reference to the definition of the term Ambient
Application presented in Section 2, in addition to the relationship to
the physical environment, the applications integrated in the
framework are self-explaining and discoverable in the network.
They further provide services for interaction-related invocations
and miscellaneous messages.

However, the authors have not stated how smart environments
can be equipped with self-explaining applications. Thus, the concept
of managing applications with respect to the more general metaphor
of an application store has not been particularly targeted. Yet, all
these works provide a suitable foundation for the integration of self-
explaining applications into smart environments.

3.3 App management for smart
environments

Stastny et al. (2015) present three main challenges in adapting
the app store metaphor to IoT scenarios based on a literature review,
interviews, and a survey. Namely, (a) the difficulty of supporting the
diversity in the software and hardware vendor market, (b) the
tension between context awareness and the need for pre-

Frontiers in The Internet of Things frontiersin.org04

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


configuration as well as pre-packaging, and finally, (c) the usability
challenges related to the number of devices and apps. Based on these
insights, the authors developed a proof-of-concept implementation
of an IoT app store called UbiBazaar that allows the deployment of
general applications to devices with specific characteristics.

Moreover, the usage ofMulti-Agent Systems has been proposed
to provide a decentralized solution for the deployment of
applications in smart environments (Piette et al., 2016). The
authors model the deployment on a given infrastructure based
on graphs and apply a graph matching algorithm to find entities
that can support running the application. Moreover, to ensure
resource and information privacy, the authors propose a Multi-
Agent System. Applications are managed by application agents
during runtime. They guarantee the consistency of the application.
In order to deploy or undeploy required functionalities of the
application, they cooperate with one or more infrastructure agents.
Infrastructure agents deal only with parts of the global
infrastructure and do not share this information with other
agents. These agents propose (partial) solutions for the
deployment of functionality. They are also capable of deploying
and undeploying functionalities of an application on request.
Further agents provide information about the user or manage
groups of infrastructure agents.

Kubitza (2017) introduces the concept of extensible smart
environments based on an application store. These applications
are then able to dynamically use the capabilities of available smart
objects. They provide a unified schema for accessing sensors and
actuators of heterogeneous devices from within these applications,
which are running within a smart environment. Furthermore, they
present a middleware and a runtime that implement this approach.

Malik et al. (2019) present a platform capable of providing
virtual representations of physical objects, called Virtual Objects.
This is based on an application store that can then be used for service
composition. It allows for the sharing and discovery of Virtual
Objects as well as the provision of micro-services associated with
each Virtual Object uploaded into the store. Thus, the platform
makes it possible to reuse Virtual Objects and respective services
residing in multiple spaces in different contexts and scenarios.

These works provide valuable insights regarding the importance
of mechanisms for deploying and managing applications within
smart environments. Moreover, they present concepts and technical
details of the implementation of respective systems. But none of the
described publications incorporates the concept of self-
explainability. Furthermore, there has been no particular focus on
human-computer interaction when providing applications for smart
environments. However, it has previously been argued that users
would benefit from a focus on the interaction when providing and
explaining ensembles of smart objects and applications.

The provision of applications that are part of an interactive
system particularly highlights the following aspect: an application
should not only run on a computer that is technically capable of
executing it. Instead, applications should be dispatched to devices
with computing capabilities that further satisfy certain constraints,
e.g., devices with display capabilities or devices that can make use of
specific input or sensing components. For instance, an application
that makes use of a graphical user interface needs to be able to
display it. Dynamically changing situations and the option for users
to bring their own or in general further devices into the
environment, requires a highly flexible solution for device and
application management and their interconnection.

FIGURE 1
Overview of the components involved in the Ambient Reflection framework: Input and output devices utilize the Smart Object Library to send
messages to connected devices and Ambient Applications. Meanwhile, ambient applications running in a browser use the Virtual Device Daemon via a
JavaScript API for the same purpose. Involved components provide self-descriptions to the Description Mediator, which is responsible for setting up the
connections. Upon discovery, the Description Mediator requests these self-descriptions (1). Using this information, it performs the ensembling
process and generates corresponding instructions. Next, it sends the connection details to the relevant components and delivers the rendered
instructions to components capable of displaying them (2). Finally, components can exchange messages without the Description Mediator (3).

Frontiers in The Internet of Things frontiersin.org05

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


4 A framework for managing self-
reflecting ambient applications

As already indicated in the sections above, managing Ambient
Applications in dynamically changing environments requires a
discovery of physical devices capable of the execution that satisfy
all given constraints in order to dispatch the requested applications
to these devices. This also requires information about the capabilities
of the device.

Ambient Reflection provides both a description language for
smart objects and Ambient Applications that also covers device
capabilities in a formal format as well as software components for
the discovery and connection of respective elements in the network.
However, as already explained, the framework is not capable of
managing applications, but instead expects these to be prepared
manually by users or administrators of the smart environment.

In the following, we present the extensions made to the Ambient
Reflection framework that enable it to support the management of
Ambient Applications. These extensions are an original
contribution of this paper. As already described, the existing
framework basically consists of three components. First, the
Smart Object Library provides an easy way to integrate smart
objects into the framework. Second, the Virtual Device Daemon
and its corresponding Virtual Device API allow for an integration of
web applications and other software that runs in restricted

environments or software that cannot make use of the Smart
Object Library. And third, the Description Mediator is used to
connect smart objects or Ambient Applications.

Figure 2 depicts the application management process
implemented with the components previously introduced. The
following initial situation is assumed: A device runs a process
with application management capabilities. This manager
describes itself and the restrictions of the device on which it is
running in a self-description. A call is made through the Description
Mediator that prompts the manager to start an application. This
application also has a self-description. Once the requested
application is started, connections to other components in the
environment can be established forming an ensemble.

After launch and connection, instructions for operating the
system can then be generated based on the self-descriptions of all
devices available in the ensemble. Managers could be bundled with
devices that are intended to provide management functionality for
smart environments, or they can be provided for existing
infrastructure.

The following sections describe the components and their
behavior in detail. Moreover, we introduce the new Limited
Application Manager that handles devices capable of running
only one Ambient Application at a time. This allows for the
management of applications that use resources that should not
be shared, such as display or audio capabilities.

FIGURE 2
Overview of the provisioning of Ambient Applications using amanager. A usermay request the DescriptionMediator to start an application, which, in
turn, requests a manager capable of executing an application to do so. In principle, managers may be capable of launching multiple applications
(indicated by the gray dashed line). Once started, applications can be connected to smart objects or other applications by the Description Mediator to
form an ensemble.

Frontiers in The Internet of Things frontiersin.org06

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


4.1 Smart object library

In order to integrate devices into the framework, a programming
interface called the Smart Object Library can be used. It manages all
network communication within the framework and is founded on
an event bus to handle invocations. A factory pattern for a simple
setup and instantiation of smart objects can be utilized.

We extended the device library to provide mechanisms for the
management of ambient applications. This includes a service for
starting and stopping applications with specific environment and
configuration options. Refer to Figure 3 for an overview of the
structure of the library including the newly added application
management service.

The extensions made to the framework also cover an extensible
component for the management of apps. The application manager is
supposed to pull the given version of an application from a defined
and trusted repository or application hub. Actual implementations
of application managers may inherit from this component and
implement the respective methods to offer management
functionality based on various conceivable foundations (e.g.,
based on virtualization, containerization, modified environments,
or other concepts of sandboxing).

As a proof of concept, we implemented an application manager
that executes Ambient Applications as subprocesses on the machine.
This manager pulls the given version of an application from a
defined and trusted application repository. We further introduced
the option to configure the repository’s origin allowing to select a
custom data source. Obviously, the configuration should point to a

trusted repository of application archives. The application is loaded
as an archive that gets extracted after an integrity check based on a
checksum comparison.

It is generally possible to start several applications on a single
managed device. However, depending on the device and its
configuration, some devices may only be able to run one
application because resources must be reserved (e.g., the display
or other actuators, ports that can only be used once, etc.).
Whenever this is the case and there is already an instance of a
component integrated into the framework, this instance will be
shut down before the requested application is started. This avoids
resource deadlocks.

Next, the application manager executes the pulled application
using the given runtime environment and configuration for this
application. Input and output channels for the launched application
can be inherited from the parent component. Logs may be attached
to existing ones at the same location by also inheriting the logging
configuration. If the parent application that contains the application
manager stopped components connected to the framework prior to
the execution of the requested application, these components
resume their work once the application terminates (via regular
exit or via a requested shutdown).

Finally, we introduced a handler for browsing requests after
launching an application. This becomes relevant when the requested
application is web-based and makes use of the Virtual Device
Daemon and its corresponding programming interface in order
to be integrated into Ambient Reflection. When using this
component, the web browser is instructed to open the given

FIGURE 3
Structure of the smart object library (cf. Burmeister, 2018). An event bus is used to exchange messages between the communication interface and
the device or application-specific implementation. The software component for the smart object or the Ambient Application is initialized by a builder
based on a self-description. Various services for self-descriptions, configurations, interactions and non-interaction-related messages, as well as
application management are provided via a communication interface.

Frontiers in The Internet of Things frontiersin.org07

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


address. It is also possible to request the full screen or kiosk mode of
the browser.

4.2 Virtual device daemon and API

The Virtual Device Daemon uses web sockets to act as a proxy
for components that cannot access the Smart Object Library directly.

We extended the Virtual Device Daemon to also support
application management. Since the daemon’s implementation is
based on the Smart Object Library, updating to our recent version of
the library covered most aspects required for the management.
Furthermore, we implemented extensions regarding the message
exchange for network events (discovery and loss of smart objects/
Ambient Applications) as well as application termination requests.

4.3 Limited application manager

In many situations, only one application can be applied to a
device at a time, since applications may occupy relevant resources
that are limited (e.g., foreground display capability, audio speakers,
or, more basically, certain ports). For these cases, we propose using a
device upgrade, where, at first, only a minimal instance is running in
order to be discoverable and to provide the application management
services that allow for the startup of an application. We also refer to
this minimal instance as an idle device, since its main purpose is to
accept a request for launching an application. Hence, the launch of

an application serves as a device upgrade allowing the device to
provide functionality and a user interface. This is similar to a
protocol upgrade.

Amanaging component can then discover devices running these
minimal instances and next, can request device information that
includes respective capabilities. A distribution algorithm is able to
assign requested applications to discovered devices capable of
executing these based on the device information. Next, the
selected device will be requested to start the assigned application
(see Figure 4). First, the running minimal instance checks the
availability of the requested application. If not available, the
instance will respond with an error message and continue its
work. Otherwise, the application will be pulled and prepared to
be executed using the given runtime environment and configuration
options. Then, the running minimal instance will be stopped in
order to free used resources, and next, the requested application will
be started as a subprocess. For this purpose, launched applications
are configured to offer a service that allows for a termination of the
application by the Smart Object Library. Unless explicitly specified
otherwise, launched applications do not provide management
capabilities. Additionally, the changes made to the framework
make it possible to inherit the identifier of the parent for the
started application.

If requested, a web application can also be opened using any
installed browser. In doing so, web-based applications that are
integrated using the Virtual Device Daemon and the
corresponding API can also be started on the device and
integrated into the framework. Once the started application

FIGURE 4
Lifecycle of a limited application manager/an idle device that launches Ambient Applications.

Frontiers in The Internet of Things frontiersin.org08

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


terminates, the minimal instance will be restarted to be able to accept
further launch requests.

4.4 Description mediator

The Description Mediator is the core component that is used to
connect components based on their self-description and to provide
instructions for these connected ensembles as well as to inform the
involved components about both. The mediator merges descriptions
of connected components into a description of the whole ensemble
that serves as a foundation for the generation of user instructions.

Although devices may be requested to start applications using
the respective communication protocol, this would require a
component to discover the devices as well as their capabilities
and to dispatch applications to these devices. We extended the
Representational State Transfer (REST) interface of the Description
Mediator to accept application launch requests (see Figure 5). It is
possible to request the start on a specified device or to request a
distribution on any device capable of executing it.

We also introduced a distribution algorithm that takes into account
the properties of the device. This includes hardware as well as software
capabilities. Software capabilities can be expressed using MIME types
(Multipurpose Internet Mail Extension), a widely used format for the
indication ofmedia types in digital systems.We propose a format that is
inspired by MIME types to describe hardware properties. This also
covers peripherals connected to the devices that may be used. Although
further criteria are conceivable, we implemented the first prototype of
the distribution algorithm only based on the described capabilities.

4.5 Instruction rendering engine

The Description Mediator merges the self-descriptions of the
components involved in an ensemble into an aggregated description
(see Burmeister, 2018). In addition, plain textual instructions, purely
pictorial guides, and simple tutorials based on the Hypertext
Markup Language (HTML) can be generated using respective
rendering engines.

We extended the HTML rendering engine in order to allow for
more detailedmultimedia instructions that also fully support Ambient
Applications (a screenshot is depicted in Figure 6). In doing so, we
enabled browser-based guides that integrate textual descriptions with
graphical representations of required user input actions and
corresponding system responses. Particularly, animations of the
required interaction steps can be provided. Consequently, purely
textual instructions can be created, as well as instructions that are
enriched with images or animations. For multi-step instructions, an
overview page provides access to detailed explanations of each task,
with navigation elements in the header and footer for easy access.

The following section describes a user study conducted to
evaluate the quality of the generated instructions.

5 Evaluation of the self-explainability

In order to investigate the aspect of self-explainability provided by
the described framework, we conducted a laboratory study with
students. In general, there is a plethora of conceivable combinations
of smart objects and Ambient Applications for various application

FIGURE 5
The distribution of Ambient Applications to application managers (in this case idle devices) capable of launching the applications. In this example,
three limited application managers are running in a smart environment. Here, two applications are requested. The Description Mediator distributes these
two applications to two of the managers.

Frontiers in The Internet of Things frontiersin.org09

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


domains. However, in order to make a claim to transferability and a
contribution to general validity, we have selected three representative
application scenarios that cover relevant application domains of smart
environments. One focuses on a smart home application, and two
scenarios address the medical domain.

5.1 Study design

We conducted a quasi-experimental mixed-design user study
that combined qualitative and quantitative instruments. The
purpose of this study was to evaluate the clarity,
understandability, and some design choices of the instructions
generated by the described Ambient Reflection framework.

Participants were asked to perform tasks using the ensembles
and, subsequently, to evaluate the system based on their experience.
During the process, we collected objective performance data and
recorded subjective data in subsequent interviews and
questionnaires. The procedure includes two questionnaires, a
participant observation, and a semi-structured interview.

The purpose of this procedure is to answer the following
research questions associated with our second research question
regarding the self-explainability of our proposed framework:

(a) Assuming that self-descriptions of the components of a
typical ensemble are given. Is it possible to generate
instructions based on these in order to effectively convey
the control and system response of the ensembles to users?

(b) In which of the scenarios is an integration of the instructions
into the respective application preferable to a separate display
on a different device?

(c) Are pure textual instructions preferred to animated or
illustrated instructions?

5.2 Sample

We recruited students from the University of Lübeck for the user
study. We sent invitation emails and also personally contacted
the students.

Persons who are not fluent enough in German or English to
understand and answer the items on the questionnaires or to
understand the instructions generated by the system were excluded.

In total, we recruited twelve participants, seven male and five
female. The average age was 25 years (with a standard deviation of
3.6 years). Seven participants studied computer science, two human
medicine, and three health and healthcare sciences.

FIGURE 6
A screenshot of rendered multimedia instructions for controlling a smart light by using a given Ambient Application. These instructions were
generated from the self-descriptions of the involved components. The top of the figure shows a collapsible (A) which could be expanded to provide a
more thorough explanation of this interaction step. The details view contains an image of the application element (B) and an animation of the reaction of
the output device (C) Additionally, text instructions of the required input actions and the corresponding system response are depicted. The
navigation bar is situated at the bottom of the screen. It allows switching to the previous instruction (D) the next instruction (E) and navigating back to the
overview of the entire ensemble (F).

Frontiers in The Internet of Things frontiersin.org10

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


Most of the participants had not interacted with any of the
interaction devices involved prior to the experiment. However, they
knew about the concept of smart objects in general, e.g., smart lights.

5.3 Study procedure and instruments

During the study, objective and subjective data were collected.
This includes sociodemographic, performance, interview, and
survey data.

At the beginning of the study, participants were introduced and
provided with detailed information about the research subject and
the study procedure. They then completed a sociodemographic
questionnaire including items on previous experience with smart
environments before proceeding to the practical phase of the study.
The participant observation was divided into three phases, each of
which was followed by interview questions. Finally, we asked the
participants to complete a questionnaire to evaluate the instructions
of the system. The laboratory setup for the study is shown
in Figure 7.

5.3.1 Sociodemographic questionnaire and
previous experience

The questionnaire covers general information, such as age,
gender, recent occupation, study program (if currently studying),
and a self-assessment of English language skills. In addition, items
related to previous experience with the interaction devices
involved and items related to the affinity for technology
interaction (ATI) as published by Franke et al. (2018)
were included.

5.3.2 Participant observation
The participant observation covers three parts, each asking the

participants to learn the control of an ensemble. In total, participants
were asked to perform five tasks using three ensembles (see Table 1).
The tasks were presented in a fixed order since they were designed to
progressively increase in difficulty and ensemble complexity.

We first asked the participants to make use of an ensemble to
control an application for Augmentative and Alternative Control
(AAC) using a ball-shaped interaction device (BIRDY, cf.
Kordts 2023). BIRDY is controlled using tilt and press gestures.
The application addresses care scenarios where patients are unable
to express their needs, but may rely on a system to assist with
communication. Users navigate through a circular menu to select
and thereby express needs.

The next three tasks were to use a room-control application to
control smart lights and smart thermostats. The user navigates
through a grid menu to select elements for controlling the lights
and heaters. The application in turn was controlled by a camera-
based hand tracking gesture controller (Leap Motion).

Finally, a touch-sensitive gesture controller worn between index
and middle finger (LITHO) and a smart bluetooth button (Flic) was
used to control a pain documentation application for smart
hospitals. This application is supposed to help with pain
management in hospital wards, particularly in intensive care
units. Users navigate through a wizard, selecting the pain level
and location.

For each task, the participants were told to read the instructions
in order to find out how the respective ensemble could be controlled.
They were also asked to identify the devices involved in each
ensemble and to use the identified devices to perform the actions

FIGURE 7
Laboratory set-up for the evaluation of self-explainability. The first ensemble with the ball-shaped interaction device (A) and the Augmentative and
Alternative Control Application (B) is highlighted in red. The second ensemble, which includes the room-control application (C) with the hand tracking
gesture controller (D) the smart thermostat (E) and the smart light (F) is highlighted in green. The smart button (G) the pain application (H) as well as the
touch-sensitive gesture controller (I) are all part of the third ensemble, which is highlighted in blue.

Frontiers in The Internet of Things frontiersin.org11

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


TABLE 1 The tasks, the required components and the minimum number of input actions required to solve the interaction task using the given ensemble
during the participant observation. Note, that the instructions were always displayed on the same monitor (smart white board).

Task Involved components Description Inputs

1 Ball-Shaped Interaction Device (BIRDY), AAC Application Read the instructions to find out how to control the communication
application. Identify the required devices (selection on a table) and perform the
necessary actions to select the menu element pain

3

2 Hand Gesture Controller (Leap Motion), Room-Control Application Read the instructions to find out how to control the room control application.
Identify the required devices (selection on a table) and perform the necessary
actions to access the light control menu

2

3 Hand Gesture Controller (Leap Motion), Room-Control Application,
Smart Lights (Philips Hue Go)

Read the instructions to find out how to change the color of the lamp. Identify
the required devices (selection on a table) and perform the necessary actions to
set the lamp color to blue

3

4 Hand Gesture Controller (Leap Motion), Room-Control Application,
Smart Thermostat (FRITZ!DECT 301)

Read the instructions to find out how to change the temperature of the heater.
Identify the required devices (selection on a table) and perform the necessary
actions to set the temperature to a value of your choice

≥ 8

5 Smart Button (Flic), Touch Controller (LITHO), Pain Documentation
Application

Read the instructions to find out how to control the pain documentation
application. Identify the required devices (selection on a table) and perform the
necessary actions to document that you have severe pain (6 out of 10) in your
left leg

11

FIGURE 8
Laboratory set-up of the screen with instructions for the ensembles displayed (in this case instructions for the fifth task).

Frontiers in The Internet of Things frontiersin.org12

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


necessary to complete the given tasks. Towards this end, we
presented generated instructions for each ensemble on a separate
display (rectangular smart white board) and allowed the participants
to read and understand these instructions (see Figure 8).
Participants interacted with the instructions using a mouse. We
provided animations for the required input actions with most
components within these instructions. Only the interaction with
the Leap Motion controller and the Flic button had still images
without any animation. We also provided textual descriptions of the
input actions for all components.

For the task of identifying the devices involved in the respective
ensembles, a selection of devices was presented on a table, with
applications displayed on monitors placed around the table. There
were more devices on the table than were required for the tasks in
order to avoid the selection becoming obvious due to devices already
assigned (see Figure 7).

We used a wizard-of-Oz approach, meaning that participants
did not actually control the applications, but rather the applications
were remotely controlled by the investigator. For incorrect inputs,
participants were told that their input had no effect.

In general, participants were asked to verbally express their
intentions and intended actions to make the procedure transparent.
Furthermore, participants could ask questions or make comments at
any time during the process.

Key aspects assessed included error count and error type, task
completion time (including reading the instructions, identifying the
involved components and interacting with the ensemble), task
progression, and how often the participants looked at the
instructions. Any issues encountered were recorded in a problem log.

5.3.3 Semi-structured interview
After solving the task with each of the ensembles, we asked three

interview questions to identify possible problems, to discuss the
place of the presentation of the instructions and to give room for
further remarks. We asked whether there are any uncertainties and
at what points they occur. We also asked where in the room or on
which device the participants would expect the instructions to
be displayed.

5.3.4 Survey data
Finally, participants were asked to complete a questionnaire to

assess the comprehensibility of the generated instructions.

6 Results

The provided aspect of self-explanability helped the participants
to solve the tasks. In addition, the instructions were considered to be
very understandable and particularly helpful in the learning process
of controlling the ensembles. However, the participants also pointed
out some ambiguities and suggested improvements. The main
findings of the study are presented below.

6.1 Affinity for technology interaction

The sample had a high affinity for technology interaction of 4.57
(with a standard deviation of 1.25 and Cronbachs alpha of 0.96)

compared to the expected mean of the German population of 3.6
(with a standard deviation of 1.08) reported by Franke et al. (2018).

6.2 Participant observation

The participants solved all tasks posed successfully, although
several interpretation mistakes were made during the second and
fifth task. Mean errors for the five tasks can be seen in Figure 9.

Some participants had problems interpreting illustrations of the
gesture control of the Leap Motion controller as well as the Flic
button. Moreover, participants did not notice the perequisite of the
LITHO controller to additionally place the thumb on the device
when swiping. Though, most participants noticed their mistake after
another, more thorough look at the instructions and particularly
reading the provided instruction texts. Others attempted a trial-and-
error-process to find the correct gesture.

All but one participant were able to identify the involved devices
and applications on the first attempt.

Furthermore, the navigation path within the applications was
mostly clear. Mistakes were made due to testing gestures. A minor
ambiguity was remarked on the fourth task. Some of the participants
were not sure how to return from a submenu to the main menu.

Figure 10 depicts the processing times.

6.3 Interviews

In the interviews, five participants explicitly stated that they
found the instructions or their structure clear. In particular, the
illustrations and animations were positively mentioned by two of the
participants. However, one participant pointed out that animations
are not necessary for every illustration.

Two participants saw ambiguities in the design of the
instructions. This was particularly the case with the collapsible
menus, that are used to group parts of the instructions and hide
details about the interaction execution and system responses.
Participants did not realize that these elements could be
expanded to display their contents. In addition, four
participants noted that some wording in the instructions was
too vague or misleading. In particular, the instructions for
using the Flic button were ambiguous, stating that the finger
must be moved toward the device. Instead, the button needs to
be pressed.

Two of the participants stated that their interpretation errors
with respect to the control of the Leap motion were caused by the
selected illustrations of the gestures. Three participants commented
negatively on redundancy in the instructions, especially for
controlling the smart lights. Two of the participants had wished
for more information about the menu structure, which is only
scarcely addressed due to the black-box view. In addition, four
participants said that their misunderstanding was caused by not
reading or looking at the instructions carefully–sometimes relying
only on the headings. To improve the clarity of instructions and
control of some of the devices, three participants suggested step-by-
step tutorials.

Eleven of the participants could imagine displaying the
instructions on a separate device, while ten of the participants

Frontiers in The Internet of Things frontiersin.org13

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


could also imagine integrating the instructions into the respective
application. Regarding the medical context, participants tended to
use a separate device, whereas integration into the applications was
considered suitable for smart home applications.

Concerning the integration of instructions into applications, the
need to switch between instructions and the application was seen as
a potential barrier. Possible forms of integration were seen in help
menus or instructions presented prior to using the application itself.
When presenting instructions on a separate device, participants
noted that these devices should be close to or at least in line of sight
of the user.

In addition, a participant noted that applications for the medical
field should take into account that personnel should also know how
to use the ensembles. Therefore, the participant suggested separate
instructions for the staff.

6.4 Questionnaire

The self-explainability of the smart environment(s) was
described as very well intelligible. Particularly, the assistance
during the learning process of the control of the ensembles was
positively noted.

Descriptions of system responses were considered to be well
understood. When asked whether animations, illustrations or text
descriptions were more helpful in understanding the input actions,
there was no consensus among the participants. In general,
animations and illustrations were rated as more helpful than text
descriptions. However, all three types of presentation were
considered helpful.

Language clarity was rated slightly lower than content clarity. In
addition, participants stated that repeated descriptions of similar

FIGURE 9
Observed errors in the performance of the tasks. The bars represent the average number of errors (for example, a total of 4 navigation errors were
observed across all 12 subjects in task 1). The additional markings illustrate the standard deviations. Input errors refer to errors in the execution of the
required gestures or input actions that therefore do not result in an input using the designated input device.

Frontiers in The Internet of Things frontiersin.org14

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


objectives could have a negative impact on the clarity of the
instructions. However, the overall size of the instructions was
judged to be adequate.

The results of the questionnaire are depicted in Figures 11, 12.

7 Discussion

Several key findings can be derived from the described results.
The high success rate and the reported clarity of the instructions, as
well as their structure, underline the assistance provided by the
generated instructions. In general, all participants were able to learn
the interaction effectively within an appropriate timeframe.

In principle, no direct conclusions can be drawn from the
processing times. However, in combination with the observation
and the comparison with each other, the following interpretations
can be made. The required time to solve the given tasks correlates
with the interaction mistakes and can also be explained by the
consequence to take a more thorough look at the generated
instructions. The test subjects were observed to learn the control
basics of the ensembles increasingly quickly using the instructions,
but particularly struggled with the exact details of the gesture
execution in task five. In addition, it was observed that test
subjects were able to recall a control once it had been learned
(concerning the consecutive tasks two to four). This observation is
also consistent with the measured execution times.

Due to the black-box concept, navigation paths within the
applications are not covered by the instructions. Only
instructions for control options, such as how to control the
menus, are covered by the generated manuals. In this respect, the
successful navigation through the menus is notable. An
explanation could be given by the low complexity of the
menu structures involved in the applications. However, we
argue that a thorough design of the applications should
generally support the understanding of menu structures and
required navigation paths.

The high variance in responses regarding whether animations,
illustrations, or text descriptions helped understanding input actions
may be related to different types of learning. In addition, the specific
wording of the texts and the choice of animations and illustrations
may have played a role. Regardless of the type of graphical
representation implemented, the varying quality of the
visualization of the devices may have introduced bias.

The chosen approach therefore entails some limitations detailed
in the following, particularly regarding:

• participant diversity,
• size of the study population,
• system autonomy (regarding the wizard-of-Oz approach),
• embeddedness of instructions and realistic scenarios.

Only students were surveyed in the study. They belong to the
group of young adults who have grown up in the digital world
(i.e., digital natives). Biases in their views and judgments of the
instructions due to age distribution, affinity for technological
interaction, and educational background cannot be ruled out.
While the study population represents a relevant user group of
smart homes, other user groups may face different issues.

Limitations also lie in the size of the study population, the
recruitment process (selection bias) and the methodological
procedure based on interviews, where social desirability may have
caused biases. In general, semi-structured interviews may have been
influenced by uneven enquiries that cause an interviewer bias. To
avoid this bias, we asked open questions and avoided
suggestive questions.

A possible bias may also have resulted from the fact that the test
subjects did not actually control the systems, but were controlled by
the experimenter (according to the wizard-of-Oz principle).
Consequently, the system autonomy was not fully tested, so that
a bias in the response behavior regarding the comprehensibility of
the input actions to be performed is also conceivable. This is
particularly true with regard to the actual gesture recognition by
the devices.

For the sake of simplicity, traditional applications were
essentially used for the evaluation, with very limited integration
into the environment. The primary concern here was the
understandability of the ensembles and not the realistic use of
the applications. In addition, monitors and more or less classic
applications are also conceivable in smart environments. In the
course of the evaluation, the instructions were also displayed on a
rectangular monitor and could be operated by touch or mouse.

This leaves room for future studies that deal with an actual
system autonomy and the comprehensibility of generated
instructions with a focus on a stronger integration into the

FIGURE 10
The average time in seconds required by the participants to solve
the tasks posed. The additional markings illustrate the standard
deviations.

FIGURE 11
Responses to the questionnaire to evaluate the length of the
generated instructions for the ensembles used in the course of the
study. The bar represents the average values of the responses and the
additional marker reflects the standard deviation.

Frontiers in The Internet of Things frontiersin.org15

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


environment. For example, through non-rectangular projections or
instructions in other formats, such as audio instructions.

8 Conclusion

In this paper, we introduced a framework for the management of
Ambient Applications (see Section 2 for a definition of the term)
within smart environments. The framework makes use of an
extension of the Smart Object Description Language (SODL) in
order to provide self-descriptions for involved smart objects as well
as Ambient Applications. Devices capable of executing Ambient
Applications are provided with a self-description that covers their
ability to manage applications, as well as further capabilities, like
connected peripherals or the ability to render specific media formats.
Moreover, the concept of a device upgrade allows for the
management of applications on restricted devices that can only
execute one application at a time. The framework is also capable of

distributing applications to discovered devices within the
environment that are capable of executing them. Additionally,
our system enables dynamic connectivity between smart objects
and applications, allowing them to control one another.
Furthermore, it can generate usage instructions for these
interconnected devices and application networks.

Overall, the presented concept of our system addresses the first
research question, where self-explaining Ambient Applications
come from and how they can be brought into the environment.
The management of Ambient Applications is a first step towards a
more general application store concept. An application store would
allow users to publish, install, update, and remove self-explaining
applications in a smart environment in a usable way. This
contributes to the concept of a marketplace for sharing and
thereby fostering innovations in the domain of the Internet of
Things (Kortuem and Kawsar, 2010).

We further conducted a user study to answer our second
research question, to what extent the generated instructions for

FIGURE 12
Responses to the questionnaire to evaluate the generated instructions for the ensembles used in the course of the study. The bars reflect the average
values of the responses, while the additional markings show the standard deviations.

Frontiers in The Internet of Things frontiersin.org16

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


dynamically connected ensembles provided by our framework
are suitable to guide users. By using generated instructions,
participants were able to solve all tasks posed successfully.
Even complicated input actions were understood. Moreover,
participants stated that they found the instructions clear and
positively noted the assistance during the learning process. Some
illustrations and formulations were criticized, which were
initially misinterpreted by several participants. These aspects
should be addressed by using adequate illustrations or
animations of the required actions within the self-description
of the components. Furthermore, the wording of some input
actions should be improved within the framework. Limitations of
the study approach include a small sample size, the restricted
diversity of the participants, the application of the wizard-of-Oz
principle, and the chosen way to display the instructions.
However, based on the results, it can generally be stated that
the framework is able to generate comprehensible instructions
for even complex ensembles, provided there is a good self-
description of the components involved. Yet, there is room for
future studies addressing the shortcomings of our
study approach.

In conclusion, our framework can be used to manage self-
explaining and self-organizing smart interaction spaces that
connect smart objects as well as Ambient Applications. Users
may easily launch Ambient Applications that are integrated in a
plug-and-play manner. This contributes to our vision of dynamic
interconnections within a landscape of present smart objects and
applications as well as devices brought by the users and
applications installed at will. All of this is adapted and
explained to the users and their respective situations,
preferences, and needs.

While our framework provides a distribution algorithm that
takes device capabilities into account, several further criteria are
conceivable. For instance, the positions of the devices may play a role
when distributing the applications. Furthermore, (indirect)
interconnections between the device and other components may
be taken into account. Towards this end, graph-based modeling of
the infrastructure and graph matching to identify entities that can
support running the application may present a suitable approach (cf.
Piette et al., 2016).

Our work may lay the groundwork for further future research.
One such direction is the development of a comprehensive
application store for Ambient Applications, particularly one that
provides a suitable user interface that integrates well into the
physical environment. The choice of adequate display and
interaction options is an open research question in this regard.
Furthermore, deploying at scale for real-world application scenarios
is a logical next step. For example, implementing various scenarios
in the context of teaching, particularly focusing on providing
Ambient Serious Games (cf. Brandl et al., 2023) and other
interactive teaching methods, such as station learning, shows
potential. Additionally, providing Ambient Applications could
support workshop methods like World Café (Brown and Isaacs,
2005). Finally, investigating other instructional formats, particularly
non-visual ones, as well as comic-based manuals and situational
assistance based on Augmented Reality during operation, is
of interest.

Data availability statement

The datasets generated by the survey research during and/or
analyzed during the current study are available in the Zenodo
repository at: https://doi.org/10.5281/zenodo.16739014.

Ethics statement

Ethical approval was not required for the studies involved
humans because it is focusing on the quality and preferences
regarding the design of our software solution. The study was
conducted in accordance with the Declaration of Helsinki.
Ethical review and approval were waived for this study due to
anonymously data collection and the informed consent of all
participants to the processing and publication of the data.
Besides socio-demographic data, no personal data were
collected at any time. The participants received no incentive
to participate in the study. The study was conducted in
accordance with the local legislation and institutional
requirements.

Author contributions

BK: Conceptualization, Validation, Software, Methodology,
Visualization, Writing – original draft, Writing – review and
editing. LB: Conceptualization, Software, Validation,
Writing – original draft, Writing – review and editing. AS:
Conceptualization, Writing – original draft, Writing – review
and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

Parts of the content of this work first appeared in the first
author’s doctoral thesis written in German (Kordts, 2023). This
applies to the section on the term Ambient Application, the
Instruction Rendering Engine, and the study carried out to assess
the self-explainability of our framework. However, the
implementation of application management using the Ambient
Reflection framework is presented for the first time in this paper.
We thank all those who participated in our study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in The Internet of Things frontiersin.org17

Kordts et al. 10.3389/friot.2025.1623733

https://doi.org/10.5281/zenodo.16739014
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733


Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/friot.2025.1623733/
full#supplementary-material

References

Altakrouri, B. (2014). Ambient assisted living with dynamic interaction ensembles.
Germany: University of Lübeck.

Bellavista, P., Corradi, A., Foschini, L., andMonti, S. (2018). Improved adaptation and
survivability via dynamic service composition of ubiquitous computing middleware.
IEEE Access 6, 33604–33620. doi:10.1109/ACCESS.2018.2842683

Brandl, L. C., Kordts, B., and Schrader, A. (2023). “Technological challenges of
ambient serious games in higher education,” in Proceedings of the MuM’23 workshops
on making a real connection and interruptions and attention management.

Brown, J., and Isaacs, D. (2005). The world café: shaping our futures through
conversations that matter. San Francisco, CA: Berrett-Koehler Publishers.

Burmeister, D. (2018). Selbstreflexive geräteverbünde in smarten umgebungen.
Germany: University of Lübeck.

Delcourt, K., Adreit, F., Arcangeli, J.-P., Hacid, K., Trouilhet, S., and Younes, W.
(2021). “Automatic and intelligent composition of pervasive applications -
demonstration,” in 19th IEEE international conference on pervasive computing and
communications (perCom 2021), (kassel (virtual), Germany).

Delcourt, K., Trouilhet, S., Arcangeli, J.-P., and Adreit, F. (2024). The human in
interactive machine learning: analysis and perspectives for ambient intelligence. J. Artif.
Intell. Res. 81, 263–305. doi:10.1613/jair.1.15665

Fadiga, K., Houzé, E., Diaconescu, A., and Dessalles, J.-L. (2021). “To do or not to do:
finding causal relations in smart homes,” in 2021 IEEE international conference on
autonomic computing and Self- organizing systems (ACSOS) (washington DC, USA:
iEEE). doi:10.1109/ACSOS52086.2021.00030

Fey, G., and Drechsler, R. (2020). “Self-explaining digital systems: technical
view, implementation aspects, and completeness,” in Advanced boolean
techniques: selected papers from the 13th international workshop on boolean
problems. Editors R. Drechsler and M. Soeken (Cham: Springer International
Publishing), 1–20.

Fey, G., Fränzle, M., and Drechsler, R. (2022). “Self-explanation in systems of
systems,” in 2022 IEEE 30th international requirements engineering conference
workshops (REW), 85–91. doi:10.1109/REW56159.2022.00023

Franke, T., Attig, C., and Wessel, D. (2018). A personal resource for technology
interaction: development and validation of the affinity for technology interaction (ATI)
scale. Int. J. Human–Computer Interact. 35, 456–467. doi:10.1080/10447318.2018.
1456150

Garcia Dominguez, A., Bencomo, N., Parra Ullauri, J. M., and Garcia Paucar, L. H.
(2019). “Towards history-aware self-adaptation with explanation capabilities,” in
2019 IEEE 4th international workshops on foundations and applications of self*
systems (FAS*W), 18–23. doi:10.1109/FAS-W.2019.00018

Goumopoulos, C., and Mavrommati, I. (2020). A framework for pervasive computing
applications based on smart objects and end user development. J. Syst. Softw. 162,
110496. doi:10.1016/j.jss.2019.110496

King, E. (2024). Continuous discovery and goal-oriented control of smart devices in
Mobile environments. USA: The University of Texas at Austin.

Kordts, B. (2023). Selbstreflexive Smarte Umgebungen Im Intensivkontext. Germany:
University of Lübeck.

Kordts, B., Gerlach, B., and Schrader, A. (2022). Self-organizing and self-explaining
pervasive environments by connecting smart objects and applications. Technologies 10,
15. doi:10.3390/technologies10010015

Kortuem, G., and Kawsar, F. (2010). Market-based user innovation in the internet of
things. 2010 Internet Things (IOT), 1–8. doi:10.1109/IOT.2010.5678434

Koussaifi, M., Trouilhet, S., Arcangeli, J.-P., and Bruel, J.-M. (2018). “Ambient
intelligence users in the loop: towards a model-driven approach,” in Software
technologies: applications and foundations. Editors M. Mazzara, I. Ober, and
G. Salaün (Cham: Springer International Publishing), 558–572. doi:10.1007/978-3-
030-04771-9_42

Koussaifi, M., Trouilhet, S., Arcangeli, J.-P., and Bruel, J.-M. (2019). “Automated user-
oriented description of emerging composite ambient applications,” in 31st international
conference on software engineering and knowledge engineering (SEKE 2019) (lisbonne,
Portugal), 473–478.

Kubitza, T. (2017). “Apps for environments: running interoperable apps in smart
environments with the meSchup IoT platform,” in Interoperability and open-source
solutions for the internet of things (Cham: Springer), 158–172. doi:10.1007/978-3-319-
56877-5_10

Malik, S., Ahmad, S., and Kim, D. (2019). A novel approach of IoT services
orchestration based on multiple sensor and actuator platforms using virtual objects
in online IoT app-store. Sustainability 11, 5859. doi:10.3390/su11205859

Ornes, S. (2016). The internet of things and the explosion of interconnectivity. Proc.
Natl. Acad. Sci. 113, 11059–11060. doi:10.1073/pnas.1613921113

Parra-Ullauri, J. M., García-Domínguez, A., García-Paucar, L. H., and Bencomo, N.
(2020). “Temporal models for history-aware explainability,” in Proceedings of the 12th
System Analysis and Modelling Conference (New York, NY, USA: Association for
Computing Machinery), 155–164. doi:10.1145/3419804.3420276

Piette, F., El Fallah Seghrouchni, A., Taillibert, P., Caval, C., and Dinont, C. (2016). “A
multi-agent middleware for deployment of ambient applications,” in Enablers for smart
cities (John Wiley and Sons, Ltd), 65–106.

Sadeghi, M., Herbold, L., Unterbusch, M., and Vogelsang, A. (2024). “SmartEx: a
framework for generating user-centric explanations in smart environments,” in
2024 IEEE international conference on pervasive computing and communications
(PerCom), 106–113. doi:10.1109/PerCom59722.2024.10494449

Stastny, S., Farshchian, B. A., and Vilarinho, T. (2015). “Designing an application
Store for the internet of things: requirements and challenges,” in Ambient intelligence.
Editors B. De Ruyter, A. Kameas, P. Chatzimisios, and I. Mavrommati (Springer
International Publishing), 313–327. doi:10.1007/978-3-319-26005-1_21

Frontiers in The Internet of Things frontiersin.org18

Kordts et al. 10.3389/friot.2025.1623733

https://www.frontiersin.org/articles/10.3389/friot.2025.1623733/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/friot.2025.1623733/full#supplementary-material
https://doi.org/10.1109/ACCESS.2018.2842683
https://doi.org/10.1613/jair.1.15665
https://doi.org/10.1109/ACSOS52086.2021.00030
https://doi.org/10.1109/REW56159.2022.00023
https://doi.org/10.1080/10447318.2018.1456150
https://doi.org/10.1080/10447318.2018.1456150
https://doi.org/10.1109/FAS-W.2019.00018
https://doi.org/10.1016/j.jss.2019.110496
https://doi.org/10.3390/technologies10010015
https://doi.org/10.1109/IOT.2010.5678434
https://doi.org/10.1007/978-3-030-04771-9_42
https://doi.org/10.1007/978-3-030-04771-9_42
https://doi.org/10.1007/978-3-319-56877-5_10
https://doi.org/10.1007/978-3-319-56877-5_10
https://doi.org/10.3390/su11205859
https://doi.org/10.1073/pnas.1613921113
https://doi.org/10.1145/3419804.3420276
https://doi.org/10.1109/PerCom59722.2024.10494449
https://doi.org/10.1007/978-3-319-26005-1_21
https://www.frontiersin.org/journals/the-internet-of-things
https://www.frontiersin.org
https://doi.org/10.3389/friot.2025.1623733

	Managing self-explaining ambient applications
	1 Introduction
	2 Ambient applications
	3 Related work
	3.1 Service composition in smart environments
	3.2 Self-explainability in smart environments
	3.3 App management for smart environments

	4 A framework for managing self-reflecting ambient applications
	4.1 Smart object library
	4.2 Virtual device daemon and API
	4.3 Limited application manager
	4.4 Description mediator
	4.5 Instruction rendering engine

	5 Evaluation of the self-explainability
	5.1 Study design
	5.2 Sample
	5.3 Study procedure and instruments
	5.3.1 Sociodemographic questionnaire and previous experience
	5.3.2 Participant observation
	5.3.3 Semi-structured interview
	5.3.4 Survey data


	6 Results
	6.1 Affinity for technology interaction
	6.2 Participant observation
	6.3 Interviews
	6.4 Questionnaire

	7 Discussion
	8 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


