Towards Self-Explaining Ambient Applications

Borge Kordts
Institute of Telematics
University of Liibeck
Liibeck, Germany
kordts@itm.uni-luebeck.de

ABSTRACT

In the past decade, pervasive environments have emerged from
promising research concepts to available products present in our
everyday lives. By connecting multiple smart objects, device ensem-
bles can be formed to assist users in performing tasks. Furthermore,
smart objects can be used to control applications, that, in turn, can
be used to control other smart objects. While dynamically connect-
ing these components allows for solutions tailored to the needs and
respective tasks of a user, it obfuscates the handling and ultimately
may decrease usability.

Self-descriptions have been proposed to overcome this issue
for ensembles of smart objects. For a more extensive approach,
descriptions of applications in pervasive environments need to
be addressed as well. Based on previous research in the context
of self-explainability of smart objects, we propose a description
language as well as a framework to support self-explaining ambient
applications (applications that are used within smart environments).
The framework can be used to dynamically connect smart objects
as well as ambient applications and to realize self-explainability for
these interconnected device and application ensembles.

CCS CONCEPTS

« Computer systems organization — Self-organizing autonomic
computing; « Human-centered computing — Ubiquitous and
mobile computing systems and tools; - Applied computing
— Computer-assisted instruction.

KEYWORDS

smart object guidance, self-reflection, ambient applications

ACM Reference Format:

Borge Kordts, Bennet Gerlach, and Andreas Schrader. 2021. Towards Self-
Explaining Ambient Applications. In The 14th PErvasive Technologies Related
to Assistive Environments Conference (PETRA 2021), June 29-Fuly 2, 2021,
Corfu, Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3453892.3461325

1 INTRODUCTION

Smart environments are characterized by a number of intercon-
nected devices that can be used to extend the abilities of their users

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

PETRA 2021, June 29-July 2, 2021, Corfu, Greece
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8792-7/21/06.
https://doi.org/10.1145/3453892.3461325

383

Bennet Gerlach
Institute of Telematics
University of Lubeck
Liibeck, Germany
bgerlach@itm.uni-luebeck.de

Andreas Schrader
Institute of Telematics
University of Lubeck
Liibeck, Germany
schrader@itm.uni-luebeck.de

and support them in their every day lives. Decoupling input and
output of smart devices by dynamically connecting them allows
for a needs-based provision of interaction techniques tailored to
the abilities and preferences of the users.

Further, decoupling interaction in ambient space from device and
application logic has previously been proposed as a way to honor
the high level of user mobility, diversity, heterogeneity of context,
and changing resources [1], allowing for an even higher level of
adaptivity with respect to user abilities and application context.
For example, allowing users to bring their own devices or choose
out of a list of possible devices in order to connect to other devices
and applications in the smart environment can further increase
usability and reduce barriers for some users.

There are however challenges in realizing these benefits, as not
only can the vast interaction possibilities of dynamically connected
devices and applications overwhelm users, but the trend towards
embedded and increasingly invisible devices even obfuscates their
manner of usage altogether (this problem is known as the invisibility
dilemma [12]).

While natural interaction techniques were proposed to address
these issues, it is argued that Natural User Interfaces are in fact
not natural [17] for they rely on actions a person would unlikely
perform during natural human communication. Instead, the user
has to be instructed first, which becomes even more relevant due to
the lack of standards considering interaction in smart environments.

Towards this end, the automatic generation and provision of
instructions may help users to learn how to interact with even
complex and dynamic pervasive environments. Research in the
field of human-computer interaction underlines the relevance of
explanations for the understanding of (and trust in) interactive
systems [8, 13, 14]. Previous research also points out the relevance
of self-explainability as a general feature for next generation digi-
tal systems [9] and the need for self-explainability capabilities of
intelligent environments [2].

In our previous work [3-7], we addressed self-explainability and
presented a system, called Ambient Reflection, that forms ensem-
bles of smart devices based upon their self-descriptions. It directly
connects certain input and output capabilities of devices deemed
compatible and suitable for the context and the user. Based upon
the self-descriptions of the involved devices and the formed con-
nections, Ambient Reflection then generates manuals and tutorials
on-the-fly, directly describing every individual realized combination
of input from the user and its immediate expected effect.

While this approach is arguably highly adequate for many sce-
narios, there are some shortcomings. Since Ambient Reflection was
fundamentally aimed at smart devices with relatively fixed func-
tionality, adding new functionality typically results in modifying or
creating new devices in order to do so, even though it could have

https://doi.org/10.1145/3453892.3461325
https://doi.org/10.1145/3453892.3461325
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3453892.3461325

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

been realized more practically via an external software component
using existing devices. We henceforth refer to such software com-
ponents, interacting with smart objects in smart environments, as
ambient applications.

Thus, in this paper, we present an extended version of Ambi-
ent Reflection, still automatically connecting decoupled input and
output (hardware) devices and still generating user manuals and
tutorials for their usage on-the-fly, based on self-descriptions of the
respective components, but now also including ambient applica-
tions. Notably, the system serves as a proof of concept that supports
the implementation of ambient applications that are able to explain
their controls and the provided outputs. We thereby address the
self-explainability of device and application ensembles in pervasive
environments, focusing on interaction possibilities and possible
controls of applications as well as various output devices.

2 EXEMPLARY SCENARIO

The following scenario outlines the benefit of dynamically cou-
pled and self-explaining ensembles of smart objects and ambient
applications.

Suppose an ambient application shall be used as a tool for an
augmentative and alternative communication (AAC) in a care set-
ting where the user resides more or less stationary in a pervasive
environment, like in an AAL setting or in stationary or hospital
care, as for instance it is planned in the research project ACTIVATE
[11]. Modern high-tech AAC aids are often realized using hierar-
chical menus and a touch user interface. To increase accessibility,
such a tool can be realized using an application that is controlled
by a list of input devices which are selected according to the needs,
abilities, and preferences of the respective user. When input and
application control is decoupled, a dynamic use of different input
devices can be realized based on formalized interfaces.

Decoupling devices and application means that the control of the
system must be explained to each user accordingly. In addition, new
instruction becomes necessary if another device is to be used. Hence,
it makes sense to generate and deliver instructions automatically
so that the user is informed about the control. This requires a self-
describing capability of the components involved, i.e., the devices,
but also the application.

Modern AAC aids include communication boards, but also pro-
vide many other features, like controlling nearby devices, for in-
stance. A more sophisticated assistant can be realized by using an
ambient application that enables users to control the ambiance us-
ing smart objects. In that case, also the control of the smart objects
remains unclear to the users and they should be instructed accord-
ingly. This becomes even more relevant in care settings where the
users reside only temporarily, like in hospitals, for instance.

3 RELATED WORK

Although being arguably one of the general features of future digital
systems [9], self-explainability is a topic that has been scarcely
addressed in the field of pervasive computing. Here, we present
the most relevant research regarding self-explainability of ambient
applications.

Autexier and Drechsler motivate the need for self-explainability
capabilities of intelligent environments with a focus on intelligent

384

Borge Kordts, Bennet Gerlach, and Andreas Schrader

assistance processes [2]. They argue that explanations or intrinsic
behavioural intuitiveness of assistance processes can improve their
acceptance. This becomes particularly relevant for intelligent sys-
tems that perform actions which are barely foreseeable and may
not be expected by the users.

The authors provide two examples from their own research.
The first example addresses automatic driving assistants, like auto-
matic driving wheelchairs or walkers, that communicate planned
movements which are not clearly recognizable by other persons
in the room. The authors observed that users were irritated by the
movement of these automatic assistants. The second example are
multiple smart assistances interacting together and hence, obscur-
ing the cause of an action. Two processes illustrated are a night
surveillance system and a transportation assistance which control
doors and lights. The reasons for system actions (open or close
doors and switch lights) may stay unclear to the users in some
cases. Thus, Autexier and Drechsler suggest the use of explanations
for such systems.

Towards this end, they provide design criteria for self-explaining
intelligent environments and distinguish between a user level of ex-
planations (a level understandable by non-technically skilled users)
and a program level (a programming language or low level specifica-
tions of the system behaviour). They further describe specification-
defined explanations (reduced explanations containing only a spec-
ification relevant for certain actions) and architectural explanations
(the modules relevant for an action). The authors argue that partial
models grounded to a specific situation and allowing to provide an
explanation can be sufficient but must be kept consistent to foster
the user’s mental models of the system.

In a more recent work, Fey and Drechsler propose a conceptual
framework based on aforementioned layers of explanations [10].
Explanations are modeled as cause-effect relationships that can be
combined transitively resulting in a cause-effect chain. They further
provide a technical solution for explanations on the functional level
and discuss a case study using a robot controller. Their approach
requires designers to write additional code used for the reasoning
causing additional cost. Thus, they argue that a designer may choose
to implement systems that are only partially self-explaining (e.g.
explaining only the most relevant parts) to reduce this cost while
still providing self-explainability for critical parts.

While Autexier, Drechsler and Fey aim at explaining the be-
haviour of digital systems and intelligent environments to users
as well as other persons (indirectly) involved online, interactions
between a user and the system play only a subordinate role in their
work. Opposingly, we focus on describing ambient applications
mainly from the interaction perspective, using interaction devices
to control ambient applications or ambient applications to control
the ambiance (more or less) directly while decoupling input and
output. Hence, the description of physical interactions and the cor-
responding system behaviour becomes more relevant. In contrast
to our approach, the conceptual framework of Fey and Drechsler
does not provide a concrete description format for such actions, like
how to perform a certain gesture or the steps required to perform
a task.

Towards Self-Explaining Ambient Applications

4 A DESCRIPTION LANGUAGE FOR
AMBIENT APPLICATIONS

In order to present the extensions made to the Ambient Reflection
framework that enables it to support ambient applications, we first
present the extensions made to the human and machine-readable
description language, called the Smart Object Description Language
(SODL), whose descriptions the framework uses to form connec-
tions and generate explanations. For a detailed introduction to the
original language, as well as the framework in general, refer to [5].

To get an intuition, consider ambient applications as (virtual)
output devices that can also serve as (virtual) input devices for other
systems. Due to the possible complexity of arbitrary applications,
we use the description language to describe only the control of the
applications and possible actions used to control further devices.
We describe the interfaces of an application respecting input and
output and basic system behaviour, like selecting menu elements.
This means that we consider ambient applications mostly as black
boxes and do not model the entire internal system logic, as mod-
elling the overall system behaviour for any possible application in
a description language is neither expedient nor useful in practice.
Yet, describing the system behaviour on another level can provide
a useful addition to the description of controls and outputs in some
cases and should be considered as described by Fey and Drechsler
(see also Section 6).

Figure 1 shows example descriptions and indicates connections
specifying interactions for a device and application ensemble that
reflects the examplary scenario (described in Section 2). An ambient
application that serves as an AAC aid can be controlled using a
gesture input device. Besides serving as a communication board,
the application can be used to control smart lights. The descriptions
for each device and the application consist of three parts, a general
part, state groups and parts of the task analysis describing input
and output options, presented in the following sections.

4.1 General Description Section

The device description section of the SODL is used to provide gen-
eral information about the device based on the product information.
It contains information like manufacturer, model name, product
dimensions, etc. The device can be classified according to its spatial
use (like portable, stationary or embedded) and the device type can
be identified by an ID. Furthermore, a serial number allows for a
unique identification of a particular device.

Due to the focus on physical devices, the description did not
cover virtual devices or applications. Thus, we extended SODL to
also respect virtual devices, particularly when it comes to the spatial
use. Thus, the device section becomes a general description section.

4.2 Components, States, and Capabilities

Devices are modeled with their components and respective states.
For an easier identification of the devices by the users, images of the
device as well as its components can be provided here. Components
are distinguished by their type in terms of input and output. A
component providing input modalities will be described as an input
component.

Additionally, the SODL allows for modeling states of components
in state groups (like the power states of a lamp) which can contain

385

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

both discrete (states) and continuous values (states in range). To
model interactions and the corresponding system response based
on a single state, states can be referenced by an ID. Furthermore
state groups can be addressed (e.g., to toggle states, to transition in
a sequence of states, or to address a value from a range).

Of particular relevance is the definition of medial output ca-
pabilities to indicate what kind of media can be presented by the
component (or device). These capabilities are described using MIME
types due to their widespread use for the indication of media types
in digital systems. They are used to identify the devices that are
capable of presenting manuals as well as tutorials to the users. With
this information, Ambient Reflection can decide, on which device(s)
the manual will be presented to the user. Ideally, the presentation
is as close to the action as possible.

Components, states, and capabilities also apply for ambient ap-
plications, while components describe logical components of an
application, like a control component to process inputs. States can
be used to model internal states on a coarse level, like the states
of a navigational control. In principle, more detailed modeling is
also possible, but it introduces additional complexity and is only
partially supported by the Ambient Reflection framework. Notably,
ambient applications potentially provide richer medial output ca-
pabilities, particularly when using a graphical interface.

4.3 Task Analysis

The task analysis section of the SODL is used to describe the inter-
action in greater detail. It is based on two tools: the Hierarchical
Task Analysis (HTA) [18] and the Virtual Protocol Model (VPM)
[15].

The HTA is based on a task decomposition, a recursive way to
split tasks in smaller subtasks until a subtask can be easily solved
directly. Tasks are recorded in a tree-structure and the execution
order of these tasks is denoted as a plan.

The VPM describes the interaction between human and computer
in seven stacked layers. Real-world goals are described at the top
layer, the goal layer. These goals can be reached by performing
tasks on a computer system (task layer) which consist of operations
and the used objects (semantic layer). The syntax layer describes
the temporal and spatial order of the input and output operations
whereas the lexical layer is used to depict the smallest information-
carrying unit of involved operations and objects. These units consist
of atomic commands denoted as Lexemes which are also known
as interaction primitives (alphabetical layer). The bottom layer, the
physical layer, is finally used to describe physical actions required
to communicate.

A decomposition in seven levels of details is also often applied
in an HTA and we have previously argued that these two tools can
be combined to model interactions on different levels of degrees
[3]. While the HTA serves as the underlying structure, it is filled
with information about the interactions according to the VPM.
Notably, the layer stack can be split into two parts to decouple
input and output. One possible way of doing this is separating the
description between the alphabetical layer and the lexical layer.
While interaction primitives (the smallest addressable element that
has a meaningful relation to the interaction itself [16]) are produced
by input devices, output devices describe the associated smallest

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

Device Description Device Description

State Groups State Groups

Input Options

U
Swipe
Right
Input Device ‘

Output Options

O

Navigate
Left

(>

Navigate
Right

o
M

4

Q

0Oo

Ambient Application

Borge Kordts, Bennet Gerlach, and Andreas Schrader

Device Description

State Groups

Input Options Output Options

Illuminate

Room

Brightness

Output Device

Figure 1: Example descriptions of an input device, an ambient application, and an output device, along with suitable connec-
tions: Descriptions consist of device or application details, state groups, as well as input and output options, grouped by tasks.
Connections are formed between input and output options, specifying an interaction.

information-carrying unit of involved operations and objects. When
mediating input and output devices, interaction primitives can
be linked to these units to control the output device and solve
objectives.

The task analysis of the SODL begins with the goal layer which
contains a textual description of the goal (e.g., illuminate the room).
Any other layer is structured according to the temporal order of
execution of its elements (e.g., switch the power state to on, then
regulate the brightness). This includes the execution in a sequence
or in parallel, but also a choice between possible options on the
respective layer. Since such an order or choice implicitly describes
the syntax of the interaction, the syntactical layer is omitted. While
the involved output component and the system response (transi-
tion of states) is described on the semantic layer (e.g., power state
to on), the involved state group is specified on the lexical layer (e.g.,
power state). The alphabetic layer carries information on the cor-
responding input component as well as the respective state group
and describes the interaction primitive represented by primitive
symbols leading to a state transition in the state group (e.g., swipe
left gesture). Finally, physical actions required to perform a gesture,
a voice command, etc. are described on the physical layer (e.g., move
your hand horizontally to the left).

Since an ambient application is not necessarily directly con-
nected to the physical world (e.g., when used as a tool for augmen-
tative and alternative communication), in some cases, the exact
goal, which describes a real-world concept connected to the world
external to the computer, remains unknown to the application.
Thus, we allow to omit the description of a real-world goal and to
only describe tasks in these cases (like selecting an element from a
menu).

An ambient application controlled by another device can itself
be used to control another output device. In this case, the provided
input primitives of the application are obviously produced virtually
and there is no description of physical actions for the application.
Instead, the physical actions are performed by interacting with the

386

input device used to control the application and are described in the
corresponding self-description. Consequently, the physical layer
can be omitted for these applications as well. Furthermore, another
input type apart from gesture, voice, and touch input is required
to describe these virtual inputs. Based on an analysis of typical
applications and their user interface elements, we introduced a new
input type for virtual inputs that can be used to describe interaction
primitives on a virtual level, like selecting a menu entry, pressing a
button, moving a slider, etc. The virtual input can further be linked
to a specific control element in the application using an ID. In case
none of the given elements is considered suitable, it is possible to
describe a custom input type.

We further added the option to link graphical representations to
the alphabetical and the semantic layer that can be used to illustrate
the input modality as well as the system response. These represen-
tations can be used to provide more comprehensive descriptions
that also contain images, animations, or videos.

5 A FRAMEWORK FOR SELF-REFLECTING
APPLICATIONS

A self-description of ensembles of dynamically connected smart
objects and ambient applications can be realized by a system that
uses the aforementioned description language for ambient applica-
tions and can merge them into an overall description. The Ambient
Reflection framework is able to provide such self-descriptions for
dynamically coupled device ensembles based on the SODL. Besides,
the framework addresses other self-* characteristics. On one hand,
the system is self-organizing by being able to automatically create,
restore and split device connections. On the other hand, it is also
self-stabilizing since it is able to restore and also replace (parts
of) device ensembles to keep the users able to solve their tasks.
We extended it to reflect our changes in the SODL and to make
it work with ambient applications. This also includes additional
requirements that need to be respected.

Towards Self-Explaining Ambient Applications

Input Ambient Output
Device Application Device

Smart Object Smart Object

Library A Library

Virtual Device
Daemon

v 1

1
'
I

hETS Description ___.-- -
Mediator

Figure 2: Example connections as realized by several com-
ponents of the framework: Input and output devices use the
Smart Object Library in order to forward their input and out-
put to connected devices and ambient applications. Ambi-
ent applications running in the browser employ the Virtual
Device Daemon via the Javascript API to do the same. Both
devices and applications also provide a self-description to
the Description Mediator, that establishes the connections
in the first place.

Basically, the framework consists of two components: Devices
that make use of the device library, an easy way to integrate devices
into the framework, and the description mediator which is used to
connect devices based on their functionality, to generate merged
descriptions, as well as to inform the involved devices about both.
We provided an additional way to integrate devices or applications
in the framework by providing the Virtual Device Daemon (VDD)
and corresponding APIs (see Figure 2).

The underlying concept of Ambient Reflection is protocol-agnos-
tic. The reference implementation of Ambient Reflection is realized
in Java and provides communication interfaces for the two protocols
Devices Profile for Web Services (DPWS) and Universal Plug and
Play (UPnP).

The remainder of this section specifies the components of the
framework.

5.1 Description Mediator

Both protocols (DPWS and UPnP) provide a discovery process
where new devices are discovered in the network and actions can
be executed afterwards. This feature is used by Ambient Reflec-
tion to query device descriptions based on SODL from the devices.
Based on the self-descriptions, interaction primitives and output
operations are identified and possible connections are collected.
Appropriate inputs and outputs can then be mediated. This can
be done automatically considering different extensible and config-
urable rules [6]. Towards this end, a probabilistic mediation method
is usually used due to computational complexity. Alternatively,
however, a mediation can also be specified by a direct configura-
tion, which can be recorded, for example, in the input or output
devices. An overall description of the system can ultimately be
created based on the respective device descriptions. This is done by

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

Navigate
Left

Use the gesture controller
{"’] to select an element from

O The ambient application
O O controls the power of the
the menu. To A

lamp. To switch

navigate left in the menu, 4_@ the lights, select the menu I)
use the swipe left element "Switch Lights".

gesture. ‘
v

- Position yourself in front

of the sensor. To swipe
left, move your hand horizontally to
the left in a steady motion.

\ J

Figure 3: A conceivable manual that describes how to control
a dynamically coupled ensemble consisting of an ambient
application that can be used to switch lights using a gesture
controller as an input device

merging the descriptions into the overall description (all devices
as well as their respective components are listed and the complete
task analysis consisting of all present layers is assembled). Ambient
Reflection can then deliver these merged descriptions to devices
capable of displaying the description.

To realize all these features, the so-called description mediator,
a component for the mediation, is used. We integrated the afore-
mentioned changes to the SODL in the description mediator and its
mediation process, so it is able to also connect ambient applications.

Figure 3 depicts a small part of the connected inputs and outputs
of the example illustrated in Figure 1 (swiping triggers the naviga-
tion and selecting the menu entry Switch Lights switches the lights)
as well as conceivable corresponding descriptions on two levels
(cause-effect and physical steps).

Furthermore, we created an HTML rendering engine that re-
spects ambient applications and includes graphical representations.
The engine generates static HTML pages that depict how to use the
respective interaction technique as well as the system response. The
page can be provided by a webserver and presented in a browser.
Graphical representations now enrich these tutorials to make the
required actions as well as the corresponding system responses
easily understandable. Future manuals or tutorial systems can also
use the graphical representations to include images, animations, or
videos.

5.2 Smart Object Library

The Smart Object Library is a programming interface that can be
used to integrate devices into the framework. It is responsible for all
network communication required by the framework and is based
on an event bus used to process invocations. To create a smart
object, the Smart Object Factory following the factory pattern can
be used. At start, the self-description of the smart object is parsed
into a data structure that is derived from the SODL using JAXB.

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

We extended the device library to also process and easily inte-
grate ambient applications in the framework. This includes parsing
the description language for ambient applications using JAXB.

While the Ambient Reflection framework is only used to ex-
change messages relating to the interaction, the connection config-
urations, and the self-descriptions at the various levels, introducing
ambient apps to the framework makes additional messages for
information unrelated to the interaction relevant. For example,
the battery state of wearable input devices can be presented in a
graphical interface of an ambient application. Hence, we extended
the framework to provide an additional information channel for
miscellaneous messages by implementing an additional service.
Smart objects register to this service and propagate messages from
members of the device and application ensemble to the library. De-
velopers can provide a schema for their messages which can be
used to validate incoming messages and finally parse and process
the content. For instance, a schema for battery state messages can
be used for many devices communicating their battery level to an
application. The application may parse those messages and present
the state in its interface.

5.3 Virtual Device Daemon and API

In principle, the Smart Object Library can also be used to integrate
ambient applications into the framework. To do so, applications
have to be implemented in Java and linked to the library. In many
cases, however, this is not practical, since applications are usually
implemented using other programming languages. In recent years,
JavaScript-based applications were used outside the browser more
frequently (e.g., using electron or other tools). Therefore, an in-
terface to the framework, which can be addressed by any other
programming language and in particular also from the web browser,
can present a great benefit to application developers. Thus, we real-
ized such an interface, called the Virtual Device Daemon (VDD). It
is a process that runs in the background and connects to the frame-
work. When executed, the daemon creates a smart object in the
sense of the framework based on a provided configuration. Thus,
this object is treated like any other smart object by the framework.
It can represent an input or output device, but also an ambient
application. All communication with the daemon is routed through
web sockets. Therefore, the daemon forms a bridge between the
framework and web sockets. As a result, an ambient application or
another smart device can be realized by connecting to the daemon.

The Virtual Device API is a collection of different libraries that
currently support the programming languages JavaScript, Python
and C#. We have used the libraries for Python and C# primarily
for various input devices, while we used the JavaScript API mainly
to implement ambient applications. Since the framework is based
on standardized messages and those messages are forwarded also
based on a standard, the API is easily extensible.

6 DISCUSSION

Our framework can be used to implement a wide range of self-
explaining applications controlled by and also controlling dynami-
cally coupled smart objects in assistive environments. For instance,
the system can be used to realize the high-tech AAC aid described
in our exemplary scenario (see Section 2). By using the framework,

388

Borge Kordts, Bennet Gerlach, and Andreas Schrader

Select an element from the menu

Use the Gesture Controller to select an
element from the menu of the AAC
Application

*O To navigate left in the menu

Use the swipe left gesture

<

Position yourself in front of the sensor

Move your hand horizontally to the left in a steady motion

G* To navigate right in the menu

40 To choose the current element in the menu

Figure 4: A screenshot of rendered instructions generated by
the framework for a gesture device used to control an AAC
aid application

an ambient application that supports communication as well as
controlling the ambiance by making use of various smart objects
can be controlled by a list of input devices. The device and appli-
cation ensemble can be tailored to the user’s needs, abilities and
preferences. Instructions of how to use the device to control the
application and how to control devices in the ambiance can be
generated by the framework. We provided descriptions for these
devices and connected them using our framework. Instructions of
the usage were generated by the described HTML rendering engine.
A screenshot of a part of these instructions presented in a web
browser is shown in Figure 4.

Interactive tutorials can be generated, as already previously de-
scribed [7], but should be adapted to the specifics of ambient applica-
tions to ensure high usability. Furthermore, additional information
becomes relevant, such as the concrete menu navigation, which
can be addressed better through tailored tutorials.

A general description of likely complex application logic using a
formal language is in many cases neither suitable nor useful since
a description on the interactions and their basic resulting actions
is often sufficient. Such explanations can be implemented easily at
little cost. However, when it comes to systems whose behaviour is
not easily foreseeable or expectable, providing more sophisticated
explanations should be considered. Though being more expensive,
the cost can be reduced by explaining only parts of the system.
Particularly for applications that realize basic cause-effect logic,
formal descriptions can be implemented with reasonable effort

Towards Self-Explaining Ambient Applications

and provide a useful guidance for users of respective applications.
Hence, explaining the general system’s behaviour should also be
considered in certain cases.

7 CONCLUSION

In this paper, we presented a framework to realize self-explainability
in pervasive environments, including smart objects as well as am-
bient applications (applications that are used within smart envi-
ronments). The framework is based on an extension of the Smart
Object Description Language (SODL) to support ambient applica-
tions. By using the system, smart objects and applications can be
connected dynamically to control each other. Furthermore, usage
instructions can be generated for these interconnected device and
application ensembles. This includes interaction techniques, con-
trols of applications and output devices. For more sophisticated
ambient applications, a messaging channel for information unre-
lated to the interaction, like battery states, was introduced. This
allows applications to present more detailed information about
the device and application ensemble as well as to provide further
information to the devices.

An evaluation of the framework that goes beyond a strictly tech-
nical analysis is always bound to particular applications and devices.
Thus, we plan to evaluate the framework and particularly the gen-
erated instructions in different concrete scenarios with suitable
ensembles tailored to the target group’s needs. In doing so, we plan
to investigate the usability of particular instructions but also hope
to gather insights on the effectiveness of the overall framework.

We are also working on the provision of multimodal interactive
tutorials for ambient applications that can be used to guide a user
step-by-step through the usage of an application and device ensem-
ble, similar to the tutorials described by Burmeister and Schrader
[7]. We further plan to integrate the graphical representations of
interaction techniques and the corresponding system response to
provide more elaborated tutorials using images, animations, and
videos.

Such graphical representations may also cover motion capture
data that preserve physical actions required to provide inputs (e.g.
gestures or choreographies) that could be used to animate the re-
quired actions in a tutorial. Towards this end, using a formal mo-
tion description language to describe the required physical actions
could further enhance self-descriptions and tutorials. That way,
descriptions would stay both, human- and machine-readable, while
allowing tutorials to generate detailed animations of the expected
user’s actions.

Additionally, we are planning to develop and test several ambi-
ent applications we consider useful, some of which even push the
boundaries of our definition of ambient application. A first very
special example is an ambient application to deliver the generated
instructions for all ensembles in the environment, showing what
is possible in the environment. Having an app for this purpose en-
ables the user to configure the ensembles, like for instance deciding
which output devices to provide explanations to and which to use
in the ensembles themselves. A second app is an ambient app store
with functionality similar to mobile app stores, enabling users to
download new and manage the set of apps currently active. We

389

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

are also investigating further universally useful system apps, even
inspired by traditional operating systems.

A further category of non-standard ambient applications we are
investigating, are device-enhancing apps. These apps are not con-
trolled like other apps, but rather represent a software component,
that enables new functionality, when used in conjunction with
existing devices in an ensemble. Examples are providing gesture
recognition for simple cameras, text-to-speech for simple speakers
or timer functionality to simple remote-controlled light bulbs. For
many of those apps, we currently investigate their explainability,
since they can be used to provide rather complex interactions.

Our framework could further be used to realize the planned
system in the previously mentioned research project ACTIVATE.
By describing input and output devices as well as the application
used to support the patient communication, instructions and even
interactive tutorials could be generated based on our framework.

Other application scenarios in pervasive environments are also
conceivable. Our framework can be used to provide self-explainabil-
ity, manuals, or tutorials for interaction in dynamically changing
settings in smart homes, smart offices, smart hospitals, or other
smart spaces.

ACKNOWLEDGMENTS

We thank numerous freeicons (https://freeicons.io) members for
making their icons available through creative commons rights (CC
BY 3.0, https://creativecommons.org): Soni Sokell (tripod icon), Raj
Dev (power and user icons), Gayrat Muminov (lamp icon) and Free
Preloaders (chat bubble icon). We further thank Wishforge Games
(hand icon) for making their icon available for free.

REFERENCES

[1] Bashar Altakrouri. 2014. Ambient Assisted Living with Dynamic Interaction En-
sembles. Ph.D. Dissertation. Universitat zu Litbeck.

Serge Autexier and Rolf Drechsler. 2018. Towards Self-Explaining Intelligent Envi-
ronments. In 2018 7th International Conference on Reliability, Infocom Technologies
and Optimization (Trends and Future Directions)(ICRITO). 1-6.

Daniel Burmeister. 2018. Selbstreflexive Gerdteverbiinde in Smarten Umgebungen.
Ph.D. Dissertation. Universitat zu Libeck.

Daniel Burmeister, Bashar Altakrouri, and Andreas Schrader. June 23 - 26 2015.
Ambient Reflection: Towards Self-Explaining Devices. In Proceedings of the 1st
Workshop on Large-Scale and Model-Based Interactive Systems: Approaches and
Challenges, LMIS 2015, Co-Located with 7th ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems (EICS 2015). ACM, Duisburg, Germany,
16-20.

D. Burmeister, F. Burmann, and A. Schrader. 2017. The Smart Object Description
Language: Modeling Interaction Capabilities for Self-Reflection. In 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). 503-508. https://doi.org/10.1109/PERCOMW.2017.7917614
Daniel Burmeister, Bennet Gerlach, and Andreas Schrader. 2018. Formal Defini-
tion of the Smart Object Matching Problem. Procedia computer science 130 (2018),
302-309.

Daniel Burmeister and Andreas Schrader. 2018. Runtime Generation and Delivery
of Guidance for Smart Object Ensembles. In Advances in Neuroergonomics and
Cognitive Engineering (Advances in Intelligent Systems and Computing), Hasan
Ayaz and Lukasz Mazur (Eds.). Springer International Publishing, Cham, 287-296.
https://doi.org/10.1007/978-3-319-94866-9_29

Anind K Dey. 2009. Explanations in Context-Aware Systems.. In ExaCt. 84-93.
R. Drechsler, C. Lith, G. Fey, and T. Giineysu. 2018. Towards Self-Explaining
Digital Systems: A Design Methodology for the Next Generation. In 2018 IEEE
3rd International Verification and Security Workshop (IVSW). 1-6. https://doi.org/
10.1109/IVSW.2018.8494900

Gorschwin Fey and Rolf Drechsler. 2020. Self-Explaining Digital Systems: Tech-
nical View, Implementation Aspects, and Completeness. In Advanced Boolean
Techniques: Selected Papers from the 13th International Workshop on Boolean Prob-
lems, Rolf Drechsler and Mathias Soeken (Eds.). Springer International Publishing,
Cham, 1-20.

5

=
S

https://freeicons.io
https://creativecommons.org
https://doi.org/10.1109/PERCOMW.2017.7917614
https://doi.org/10.1007/978-3-319-94866-9_29
https://doi.org/10.1109/IVSW.2018.8494900
https://doi.org/10.1109/IVSW.2018.8494900

PETRA 2021, June 29-July 2, 2021, Corfu, Greece

[11] Borge Kordts, Jan Patrick Kopetz, Katrin Balzer, and Nicole Jochems. 2018. Re-
quirements for a System Supporting Patient Communication in Intensive Care
in Germany. In Zukunft Der Pflege Tagungsband Der 1. Clusterkonferenz 2018.
BIS-Verlag der Carl von Ossietzky Universitit Oldenburg, Oldenburg, Germany.

[12] M. Kranz, P. Holleis, and A. Schmidt. 2010. Embedded Interaction: Interacting
with the Internet of Things. IEEE Internet Computing 14, 2 (March 2010), 46-53.
https://doi.org/10.1109/MIC.2009.141

[13] T.Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W. Wong. 2013. Too Much,
Too Little, or Just Right? Ways Explanations Impact End Users’ Mental Models.
In 2013 IEEE Symposium on Visual Languages and Human Centric Computing.
3-10. https://doi.org/10.1109/VLHCC.2013.6645235

[14] Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. 2009. Why and Why Not:
Explanations Improve the Intelligibility of Context-Aware Intelligent Systems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

390

Borge Kordts, Bennet Gerlach, and Andreas Schrader

(CHI °09). Association for Computing Machinery, New York, NY, USA, 2119-2128.
https://doi.org/10.1145/1518701.1519023

[15] Jakob Nielsen. 1986. A Virtual Protocol Model for Computer-Human Interaction.

International Journal of Man-Machine Studies 24, 3 (March 1986), 301-312. https:
//doi.org/10.1016/S0020-7373(86)80028-1

Gerrit Niezen. 2012. Ontologies for Interaction : Enabling Serendipitous Inter-
operability in Smart Environments. Doctoral Thesis. Technische Universiteit
Eindhoven, Eindhoven.

Donald A. Norman. 2010. Natural User Interfaces Are Not Natural. interactions
17,3 (May 2010), 6-10. https://doi.org/10.1145/1744161.1744163

Neville A. Stanton. 2006. Hierarchical Task Analysis: Developments, Applications,
and Extensions. Applied Ergonomics 37, 1 (Jan. 2006), 55-79. https://doi.org/10.
1016/j.apergo.2005.06.003

https://doi.org/10.1109/MIC.2009.141
https://doi.org/10.1109/VLHCC.2013.6645235
https://doi.org/10.1145/1518701.1519023
https://doi.org/10.1016/S0020-7373(86)80028-1
https://doi.org/10.1016/S0020-7373(86)80028-1
https://doi.org/10.1145/1744161.1744163
https://doi.org/10.1016/j.apergo.2005.06.003
https://doi.org/10.1016/j.apergo.2005.06.003

	Abstract
	1 Introduction
	2 Exemplary Scenario
	3 Related Work
	4 A Description Language for Ambient Applications
	4.1 General Description Section
	4.2 Components, States, and Capabilities
	4.3 Task Analysis

	5 A Framework for Self-reflecting Applications
	5.1 Description Mediator
	5.2 Smart Object Library
	5.3 Virtual Device Daemon and API

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

