A 3D Multi-Agent Simulation Architecture for Passenger Flow Optimisation in Mobility Hubs

Edgar Baake, Christian Hyttrek, Patrick Pfau, Aliyu Tanko Ali, Tobias Groth, Mohammad Khodaygani & Stefan Fischer

Edgar Baake – Universität zu Lübeck – Institut für Telematik – Email: edgar.baake@uni-luebeck.de

Motivation

- **Problem:** Large mobility hubs suffer from congestions, safety issues and are difficult to test in real life.
- **Gap:** Existing tools rarely combine: (i) cognitively plausible agents, (ii) integration with real-time external data and (iii) modular extensibility.
- Contribution: A modular simulator with agent cognition, 3D environments and datadriven scenarios.
- Case Study: Hamburg-Harburg train station as a representative mobilty hub.

Architecture & Formalisation

- **Platform:** Built in Godot [1], physics-based agents, 3D environment with collision and weighted navigation meshes.
- Modules: Data Lake, POI Management, Journey Creator, Cognition, Prediction, Flow Management, Data Export & Analysis.
- Formalisation: Agent spawning via probabilistic equations, incorporating external data sources such as schedules, events, weather.
- **Key Strengths:** Real-time adaptability, scenario customisation & reproducability, integration with live external data.
- **Focus:** Individuality, dynamic environment, decision-making via cognition.

Agent Modelling

- Personas: 11 types (commuters, tourists, students, reduced mobility, ...) [2]
- Spawning: Agent generation is weighted by (regularly updated) train schedules, daterelated factors and context.
- Attributes: Speed, avoidance behaviour, luggage-based mobility constraints.
- **Cognition:** (i) Knowledge base updates by signage, POIs, peer agents. (ii) Decision-making based on knowledge, needs and environmental observations. (iii) Includes replanning routes, switching goals and agent-to-agent interaction.
- **Needs:** Food, drink, toilet, rest, nicotine, information.
- Interactions: Agent-to-agent and environment-to-agent influence decision-making.

Evaluation & Results

- **Setup:** Hamburg-Harburg station, 1h simulation (14–15h, Oct 2024); Realism test with live schedule data.
- **Metrics:** Agent density per segment, travel distance per agent, rerouting frequency, POI visit rates, persona dynamics.
- **Findings:** (i) Density peaks at train arrivals. (ii) Realistic rerouting and waiting behaviour. (iii) Persona distributions evolve plausibly.
- Outcome: Validated realism and intervention testing capability.
- **Potential:** World creation seeds as well as cofigurable spawning and flexible navigation layers allow for a wide range of scenario testing.

Sources

- [1] Godot Engine Contributors. Godot engine. https://godotengine.org, 2024. Version 4.2, accessed 2025-05-06.
- [2] Bernhard Preim and Raimund Dachselt. *Interaktive Systeme: Band 2: User Interface Engineering,* 3D-Interaktion, Natural User Interfaces. eXamen.press. Springer, Berlin, Heidelberg, 2015.

System Architecture Overview

Fig. 1: Architecture with core modules and data flow.

Agent State Machine

Fig. 2: State machine with goals, cognition and interactions.

Evaluation Metrics

Fig. 3a: Spatiotemporal density heatmap by station segment. Fig. 3b: Composite behaviour metrics. Primary axis: distance travelled and goal switches. Secondary axis: secondary waiting and replanning events.