
Computational Requirements for Nano-Machines: There is
Limited Space at the Bo�om

Florian-Lennert Adrian Lau

lau@itm.uni-luebeck.de

Institute of Telematics

Ratzeburger Allee 160

Lübeck, Germany 23562

Florian Büther

buether@itm.uni-luebeck.de

Institute of Telematics

Ratzeburger Allee 160

Lübeck, Germany 23562

Bennet Gerlach

bgerlach@itm.uni-luebeck.de

Institute of Telematics

Ratzeburger Allee 160

Lübeck, Germany 23562

ABSTRACT
Akyildiz et al. envisioned the use of nanonetworks as a new para-

digm for computation on a very small scale. Since then, many scien-

tists investigated dependent aspects like nanoscale communication.

However, most research omitted specifying the complexity required

for their respective scenarios. To close this gap, we analyzed nu-

merous medical scenarios and extracted the formal problems to

be solved. We then compared the resulting formal problems using

computational complexity theory and displayed them sorted into

the classes AC0
, NC1

and L. Lastly, we describe the bene�ts of our

results for simulation purposes and to better assess the feasibility

of nanonetwork scenarios.

KEYWORDS
nanonetworks; computational complexity; nano-machines; space-

complexity

ACM Reference format:
Florian-Lennert Adrian Lau, Florian Büther, and Bennet Gerlach. 2017.

Computational Requirements for Nano-Machines: There is Limited Space

at the Bottom . In Proceedings of NANOCOM ’17, Washington D.C., DC, USA,
September 27-29, 2017, 6 pages.

DOI: 10.1145/3109453.3109458

1 INTRODUCTION
In 2008 Akyldiz et al. proposed nanonetworks as a new paradigm

for computation at the nanoscale [1]. A nanonetwork consists of

numerous nano-machines of an overall size of about 1 to a few

thousand nanometers. The individual abilities of such a machine

are to some degree inde�nite but often mentioned capabilities are:

communication, sensing/acting and computational power. How-

ever, an important open question is, if and how the aforementioned

capabilities can be implemented, since the minuscule size of indi-

vidual machines restricts the scope of functions to be performed.

Yet, many scientists from di�erent �elds have proposed to utilize

nano-machines to help combat or solve open problems. Medical

scenarios are among the most prominent areas of application, but

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

NANOCOM ’17, Washington D.C., DC, USA
© 2017 ACM. 978-1-4503-4931-4/17/09. . . $15.00

DOI: 10.1145/3109453.3109458

other disciplines— like physics, chemistry or computer science—

consider the use of nano-machines to assist in certain tasks. A

prominent scenario is the detection of certain markers that indicate

a disease [5, 23]. Unfortunately—for many scenarios—it remains

unclear how complex a single nano-machine has to be in terms of

computational power. Most scenarios establish the operations to be

performed by nano-machines, for instance by giving the formulas

to be computed, but don’t specify the computational complexity of

a single nano-machine. Sometimes they even overestimate it, as we

argue below. Furthermore, the consequences such capabilities have

on the realization and implementation of a nano-machine are often

not discussed. This leads to the question of how capable or com-

plex nano-machines at least have to be to ful�ll the presupposed

computational requirements.

A smaller or less complex nano-machine might render an ac-

tual realization easier. Firstly, basic building blocks have already

been realized, as opposed to more complex constructions [9, 19].

Secondly, combining huge amounts of building blocks—the way

today’s CPUs are designed—to form more complex constructions,

thus enabling considerable computational power might not be feasi-

ble at the nanoscale. Current CPUs, while trying to minimize their

size, with transistors only a few nanometers big, still form large

constructs in the size of centimeters.

Thus, to evaluate the feasibility of a given scenario, the question

arises what the minimal computational requirements of a single

nano-machine are in order for it to be useful to that scenario. In

other words, what is the lower bound on the computational capa-

bility of a single nano-machine to be able to perform all operations

necessary to the scenario? A nano-machine with less capability

might be simpler to realize, but would be un�t for the task.

Much research already investigated the physical environment

that nano-machines will have to deal with. Starting from commu-

nication technologies like electro-magnetic waves or molecular

channels [1] and their properties, to possible active movement,

for example by chemotaxis [11], or models for computation like

Quantum-Dot Automata [19]. The general capabilities of single

nano-machines are often described omitting precise computational

ability. The presupposed capabilities of single nano-machines di�er

greatly and range from nanoparticles completely without computa-

tional capability to features comparable to today’s microprocessors

[11], for electronic as well as biological implementations. We thus

try to provide a general analysis that applies to both types of ma-

chines.

To the best of our knowledge, no attempt to better specify the

computational complexity of single nano-machines has been made

so far and we aim to close this gap. Thus, we give a framework

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA Florian-Lennert Adrian Lau, Florian Büther, and Bennet Gerlach

to specify the computational capabilities of single nano-machines

more precisely. Thereby, we may assist future research by suggest-

ing minimum requirements for certain scenarios for nano-machines

and thus providing key-information on their realizability. Addition-

ally, the framework we provide enables a better understanding of

the capabilities of individual nano-machines, particularly useful

when simulating them.

We achieve this by �rst analyzing numerous, mostly medical

scenarios and identifying common tasks for nano-machines. We

then extract the resulting—more formal—problems corresponding

to those tasks. Using computational complexity theory, we compare

and sort them into three groups of increasing capability. Finally,

we explain how these groups actualize nano-machine application

guidelines.

2 PROPOSED TASKS FOR NANO-MACHINES
We determine a reasonable computational model for individual

nano-machines from common application scenarios. We employ

nano-medicine and communication resesearch as representatives.

We expect similar requirements from other settings.

Nanotechnology is constantly applied to oncology—the treat-

ment of cancer [22]. While nowadays mostly nanoparticles are used

to �ght cancer, more elaborate approaches like detection and de-

struction of cancer cells by engineered bacteria or nano-machines

emerge in the scienti�c community.

This approach may be generalized to the detection and treatment

of diseases in the human body with—or with the help of—nano-

machines. The already conducted research in this area includes

possible methods of treatment for diabetes [15], the detection and

localised treatment of in�ammation diseases [5, 23, 24], research

that focuses on the collaborate work of nano-machines [1], as well

as more advanced experiments concerning detection and treatment

aided by nanotechnology [9].

More complex scenarios propose a molecular automaton capable

of detecting several mandatory markers for a special disease that,

once all markers are present, starts a DNA-based manufactoring

process simulating drug release [6].

In [14], the idea of disease detection is further generalized. Other

more futuristic applications of nano-machines—like intracellular

surgery—have also been envisioned. Such techniques appear to

require high precision and local organization of chosen actuators

and sensors with perfect timing [13].

Another popular approach is the support of the human immune

system. In this scenario, nano-machines are designed to assist in

tasks for which the human self-healing capabilities won’t su�ce.

A general enhancement or the replacement of a receding body

function are also plausible [1, 13, 15].

One of the most common scenarios in the nano context is health

monitoring [2]. Since continuous surveillance by a physician is

infeasible and regular testing is time consuming, a method that

enables better feedback about the personal health status is of public

interest [13].

Most of the above mentioned approaches require certain amounts

of computational power or logical operations to produce a useful

decision [9]. Due to the importance of communication in nanonet-

works, routing and therefore addressing are also of interest. Many

Problem Signature Description

Add Z × Z→ Z Integer addition

Sub Z × Z→ Z Integer subtraction

Mult Z × Z→ Z Integer multiplication

Div Z × Z→ Z Integer division

Sign Z→ {−1, 0, 1} Signum function

Inc Z→ Z Integer increment

And {0, 1} → {0, 1} Logical AND

Or {0, 1} → {0, 1} Logical OR

Odd, Even Z→ {0, 1} Tests an integer for even-

/oddness

Div2 Z × B→ Z Division by power of 2

Mod2 Z × B→ Z Modulo with power of 2

Inv2 Z→ Z Binary inverse

It-Mult Z × · · · × Z→ Z Iterated multiplication

Min, Max Z × · · · × Z→ Z Min/max of inputs

Major2 Z→ {0, 1} Binary majority

Exp Z × Z→ Z Exponentiation

Thres2 Z × N→ {0, 1} Checks for at least n posi-

tive bits

It-Add Z × · · · × Z→ Z Iterated addition

Rega Σ∗ → {0, 1} Pattern matching for regex

a

Parity2 Z→ {0, 1} Binary parity check

Mod Z × Z→ Z Modulo

Avg Z × · · · × Z→ Z Average of n inputs

Dfs, Bfs (V ,E) ×V → {0, 1} Depth or breadth �rst

graph search

Reach (V ,E) ×V → {0, 1} Graph Reachability

Log2 Z × B→ Z Binary logarithm of inte-

gers

Median Z × · · · × Z→ Z Integer median

Table 1: Formally de�ned problems of interest to nanonet-
works. We assume that all natural numbers N and all inte-
gers Z are represented as binary, in other words as {0, 1}k ,k ∈
N+. Further, we denote binary numbers to the power of two
as B.

papers focus on advanced communication approaches in nanonet-

works. For example, a nanonetwork point-to-point routing mech-

anism has been proposed in [25]. A more complex forwarding

mechanism requires additional arithmetics, as well as a su�cient

amount of data [8, 28].

3 FROM SCENARIOS TO PROBLEMS
From the given scenarios, we extract a set of problems that a nano-

machine may need to solve—each problem corresponds to an oper-

ation a nano-machine can perform.

Table 1 provides an overview, and this section elaborates all

problems and highlights computational peculiarities.

Computational Requirements for Nano-Machines NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

3.1 Arithmetic and Logical Operators
Most scenarios, and in fact most later problems, ubiquitously re-

quire basic arithmetic on integers and booleans. This includes basic

operations, for example addition Add, subtraction Sub and multipli-

cation Mult/It-Add of two values, as well as logical operators like

And and Or. These are the basis for value aggregation, time-to-life

routing schemes and complex conditional computations.

Additionally, values need to be compared, for example for positiv-

ity Sign or even-ness Even/Odd, in regard to a threshold Thres, or

to �nd a smallest or biggest value Min/Max, or the most prominent

value Major. These either guide conditional behavior or support

robust and fault-tolerant sensing strategies.

More complex scenarios require computation of division Div

and modulo Mod, as part of average computation Avg, as well as

exponentiation Exp/It-Mult and sometimes logarithms.

With the binary representation, several arithmetic operations are

much easier when applied to powers of two, for example division.

We listed these explicitly in Table 1 as Div2, Mod2, Inv2 and Log2.

3.2 Pattern Matching and Parity
Symbol Pattern Matching Rega checks if a given string adheres to

a pattern, typically given as a regular expression a. In the easiest

case, a constant pattern, a nano-machine can check, for example,

an speci�c activator message, whereas more complex patterns may

serve for antibody detection or message parsing.

A special case of validity check is the parity check Parity, which

tests if the numbers of 1s in the binary representation of a message

is even or odd, which is typically used to verify message integrity.

3.3 Communication
As all scenarios focus on nanonetworks, communication is obvi-

ously always a necessary requirement. However, proposed forward-

ing and routing protocols pose very di�erent requirements.

The protocol as given in [25] performs directed routing based

on 2-dimensional positioning information, and only requires basic

integer addition and comparison.

The complex forwarding mechanism given in [28] requires divi-

sion, square roots, logarithms and involves a set of environmental

information that need to be gathered and stored; it in turn yields a

very e�cient hop selection mechanism.

In general, nano-machines may need to be able to distinguish and

handle multiple kinds of infrastructural messages for network estab-

lishment and maintenance. Implementations may require pattern

matching to detect address membership, conditional processing

depending on message type and storage to handle routing informa-

tion.

3.4 Complex Operations
In addition to the above problems, very complex functionality has

been proposed, for example arti�cal neural networks [23].

As networks can be represented as directed or undirected graphs,

graph algorithms are naturally of interest. These include search,

either by depth �rst Dfs or breadth �rst search Bfs, for example to

test for the existence of deviating sensor readings, and reachability

Reach to monitor the overall nanonetwork health.

3.5 Storage
Next to the required processing power, the amount of memory is of

interest as well. All but the simplest nano-machines need to store

their current state or their current location, if a drug threshold has

been reached or how often to measure a marker concentration.

Some algorithms need a varying amount of space. An important

example is nano-machine addressing: If each node of the network

graph should be addressed, each node needs to store its own label,

which in turn requires logarithmic space “Label” relative to the

graph size. As labels are required for graph traversal, the search

algorithms Bfs and Dfs, as well as Reach also require at least that

much space. Furthermore, routing algorithms that maintain routing

tables will need to store several node labels.

To compute an average of a set of values Avg, a single nano-

machine needs to provide storage to process all input values, or

if performed in a distributed fashion, several nano-machines need

to store at least two values each. This probably holds true for all

statistical algorithms, for example Max, Min, Thres and Major.

3.6 Time
Next to memory and computation requirements, nano-machines

require additional facilities, a major one being a measure of time.

Many algorithms need timing, in other words: Gathering sensor

readings at regular intervals, or noting relative occurrence of phe-

nomena require the ability to track progress of time.

For very timing-sensitive or long-term applications, even abso-

lute timestamps may be required, which require network-wide time

coordination. This is solved by protocols like the Network Time Pro-

tocol (NTP), however, their complexity renders their applicability

at the nanoscale questionable.

As an implementation of time is mostly a physical issue of build-

ing a nanoscale clock, we do not further cover time in this work.

4 PRELIMINARIES FOR COMPUTATIONAL
COMPLEXITY

Table 1 provides an unsorted list of problems likely to occur in

nanonetworks. In order to derive requirements for nano-machine

design, we now aim to classify their respective computational com-

plexity. For this, we employ complexity classes, a fundamental con-

cept of complexity theory. We will give a short introduction to the

theory, and refer to [20] for a detailed discussion.

Put simply, a complexity class contains problems that can be

solved by a speci�ed machine model. For example, the complexity

class L describes problems that a Turing-machine can solve, while

using only a read/write tape of logarithmic length with respect to

the length of the input. Consequently, a nano-machine that is at

least as powerful as a certain machine model can safely be expected

to solve all problems contained in the respective complexity class.

Next to L, we investigate two classes of importance to nano-

machines. Much research assumes boolean circuit-like systems

for nano-machines [18]. These circuits, consisting of Inv, Or and

And gates, form exactly the basis for the complexity classes AC0

and NC1
, among others [20]. Boolean circuits described by AC0

are further constrained to be polynomial in size and constant in

depth with respect to the number of input gates. The gates of NC1

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA Florian-Lennert Adrian Lau, Florian Büther, and Bennet Gerlach

L

NC1

AC0

Figure 1: The relationship between the complexity classes L,
AC0 and NC1.

are allowed to have at most two inputs per gate, but may be of

logarithmic depth.

Complexity classes can contain one another. For example, the

class AC0
is contained in class NC1∗

, which is in turn contained in L,

as shown in Figure 1. Consequently, problems often lie in multiple

classes: For example, since the problem Log2 is solvable in AC0
, it

is also solvable in NC1
, as well as in L. Thus, if a nano-machine is at

least as powerful as a Turing-machine with a logarithmic read/write

tape, it can be expected to solve Log2.

To sort a problem or a nano-machine into the complexity hier-

archy, complexity theory employs reductions. A reduction proves

that a problem A is at most as di�cult as a problem B. A reduces to

B if the following holds: An instance iA of problem A can be trans-

formed with given e�ort to an instance iB of problem B. Instance

iB is then solved, yielding solution sB . Lastly, the solution sB can be

transformed with further e�ort to a solution sA of problem A. For

example, the problem Sub can be shown to be in the same class as

Add, namely class AC0
, by reducing it to Add. To do so, we alter the

input to Add by changing the sign of its second input number via a

negation gate. The altered circuit still has constant depth and only

uses gates available to AC0
. The total e�ort of the altered circuit

can still be performed in AC0
, making it a valid reduction. It is im-

portant to note that the e�orts of both transformations need to be

restricted to the capabilities of the class of problem A, as otherwise

the problem A could be more easily solved by the transformation

itself.

5 FROM PROBLEMS TO COMPLEXITY
CLASSES

With the help of reductions, the nano-machine problems can be

positioned in relation to one another in the complexity hierarchy.

Table 2 notes, which problems can be computed by the machine

models of the introduced complexity classes AC0
, NC1

and L. As

the classes possess an inclusion relationship as shown in Figure 1,

∗
The inclusion is intuitive, since AC0

-gates with many inputs can be constructed

in NC1
as a tree of two-input gates with logarithmic depth.

Problems from sce-

narios

Additional problems

of interest

AC0
-machines: Add [10, 20] Odd/Even

Sub Div2

Sign Mod2

Inc Inv

And/Or Log2

NC1
-machine: Mult [10, 20] Min/Max

Div [10] Parity [20]

Exp [16] Reg [26]

Major [20] Mod

Thres [20] It-Mult [16]

It-Add [10, 20]

Avg

L-machine: Label Dfs [12]

Log mem Bfs [12]

Reach [21, 27]

Median

Misc.: Addressing
Routing
Broadcasting
Forwarding

Table 2: List of problems by nano-machine-type. A lower
listed bot is capable of performing all of the above tasks.
Italic items are of unclear space-complexity. We categorized
the displayed problems to the best of our knowledge.

problems of enveloped classes can also be computed by the envelop-

ing classes. Furthermore, this classi�cation is not necessary �nal,

as problems might move to a lower class if a suitable reduction can

be found.

Starting from a set of problems for which classi�cation results

have already been published, we present short sketches for a pos-

sible reduction required for the categorization of the remaining

problems:

• Inv: The negation-gate is an atomic component inAC0
-circuits

and obviously computable.

• And/Or: Just as the negation-gate, And/Or-gates are atomic

components of all introduced circuit-classes and thereby com-

putable.

• Sign: Sign may be computed by AC0
through inversion of a

prede�ned sign-bit.

• Sub: The problem of subtracting two integers is computable in

AC0
by �rst inverting the sign of one of the integers followed

by an addition.

• Inc: Inc is the addition of 1 to an integer and a special case of

Add.

• Odd/Even: Both problems are solvable by checking the least

signi�cant digits of a binary input.

Computational Requirements for Nano-Machines NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA

• Div2: The division of a binary number by k ∈ B is realized by

cutting the last k bits from the input.

• Mod2: The binary modulo by a module k ∈ B is computed by

yielding the k least signi�cant bits of the input.

• Log2: The logarithm of a binary number is the index of the

most signi�cant 1.

• Avg: The average of n binary inputs may be computed by

adding all inputs via It-Add followed by a Div by n.

• Mod: n modm may be computed by calculating

Sub(n,Mult(Div(n,m),m)).
• Median: The median may be computed by testing each num-

ber of the input to all others and counting the bigger/smaller

ones.

5.1 A Problem Compendium
The presented computational models/classes are sometimes capable

of calculating algorithms for additional problems that haven’t been

deduced from the medical nanonetworking-scenarios, but might be

of future interest
†

. Table 2, column 2 displays additional algorithms

that are used in wireless sensor networks.

Moreover, the following problems may also be computed by an

L-machine, but are of unclear interest to nanonetworks:

• Reach/Path/Connectivity [21, 27].

• Tree-isomorphism [17].

• Bipatit-test[4].

• Planarity-test [3].

• Parametrized Tree-width.

5.2 Problems of Unknown Complexity
The “Label” and “Log mem” entries aren’t problems from a computa-

tional complexity point of view. They rather re�ect the capability of

a Turing machine with a logarithmic space-constrained read/write-

tape to hold certain amounts of information.

The italic entries in Table 2 are of unknown complexity. The

system properties for nanonetworks are too vague to stipulate a

context from which explicit attributes may be concluded. However,

they are of special interest for digital communication processes

that might occur in nanonetworks. Most of the algorithms required

in communication processes or protocols may be computed by

machines capable of computing problems from the previously intro-

duced complexity classes. The physical implementation however,

remains unclear. Moreover, some problems may require a more

powerful machine-type or global knowledge about the network.

• Addressing: Addressing in general requires each individual

nano-machine to be at least able to hold a unique identi�cator.

• Routing: Routing often requires a-priori information about

the underlying network structure. Since mobile components

might be desirable, a routing-process might be complex and

is topic of current research.

• Broadcasting & Forwarding: Both operations may be part

of a routing procedure and primarily describe behavior not

provided by circuits or Turing-machines.

†
See Table 1 for a small de�nition for the problems.

6 APPLICATIONS TO NANO-MACHINE
DESIGN

The classi�cation of the problems relevant to nanoscale applica-

tions yields important insights into the feasibility of nano-machine

application scenarios, as well as guidelines for assumptions about

nano-machine capabilities. Before we discuss these further, we need

to highlight that our conclusions only account for the computational

power of the chosen machine instance. Other open problems like

communication, input/output-handling or storage are not covered.

Furthermore, restrictions may be lifted by future novel innovations

in the area of nanoscale computation.

For our research, we chose the smallest circuit-classes capable of

at least some meaningful computation. We distinguish the classes

AC0
and NC1

, as they are proven to be not equal and have signi�-

cant di�erences in size [7]. Moreover, we chose the L-class for the

small amount of incorporated memory. The logarithmic amount

is enough to uniquely identify a nano-machine in a network and

might be of special importance.

These classi�cations allow more �ne-grained speci�cation of

the exact capabilities of single nano-machines in a nanonetwork

simulation. A scientist that is not familiar with this area of research

might use Table 2 to better decide upon how “capable” a chosen

nano-machine may be and work with a more concrete concept. For

example, the problem Mult is much more di�cult than all of the

problems in AC0
.

To analyze an existing protocol or algorithm, we can apply Ta-

ble 2 in reverse. First, we need to deassemble the algorithm into its

basic operations, for example Mult, Add, etc.. From these, we pick

the operations from the strongest complexity class and count them:

This will determine the �nal complexity class of the algorithm. All

remaining operations can be added for comparatively small cost.

If a nano-machine can only perform a small set of operations, it

will not neccessarily be small or simple to build. However, a careful

selection of operations can help to cope with the size and resource

constraints of nanoscale machine construction.

6.1 Circuit-Based Implementations
This section covers both the AC0

and the NC1
classes. We chose

to closer investigate circuit classes, since a considerable amount

of research concerning nanoscale computation is based on circuit-

implementations on the basis of quantum-dot cellular automata

or carbon nanotubes. Circuits possess no storage capacity (apart

from input/output gates), which re�ects the often-imposed resource

constraints in nanonetworks [1].

Our main conclusions are as follows: If a desired nano-machine

implementation is able to simulate the atomic components of AC0
-

circuits and constraints for space and depth are met, it is probable

that the other problems for AC0
-machines in Table 2 can be solved

by a similar machine under the same conditions. For example, if

the designed nano-machine is required to calculate Add, a similar

nano-machine should be able to solve Sub—among others—as well.

The same accounts for the NC1
-class, once the respective con-

straints are met (see Section 4). Thus, a nano-machine that is able

to, for example, calculate Mult, may at least compute all problems

of AC0
and the rest of NC1

.

NANOCOM ’17, September 27-29, 2017, Washington D.C., DC, USA Florian-Lennert Adrian Lau, Florian Büther, and Bennet Gerlach

In medical terms, a possible scenario might be as follows: To de-

tect a disease, a nanonetwork is sometimes required to monitor and

accumulate a marker concentration over time. We know that Avg

is in NC1
, as well as Thres: It is thus possible without increasing

the nano-machine space or circuit-complexity to also check if the

detected concentration has passed a set threshold level.

6.2 Space-Constrained Turing Machines
Space constrained Turing machines are fundamentally di�erent

from circuits. They possess a logarithmic amount of memory and

may thereby compute algorithms for more di�cult problems. Ta-

ble 2 row 3 shows some problems of importance to nanonetworks

that are in L, which is the corresponding class. Once nano-machine

implementations are at least as powerful as logarithmic space con-

strained Turing machines, they are able to calculate exactly the

problems of class L (or maybe more). All of the problems listed

above in Table 2 may also be computed by a machine that may

compute algorithms for problems in L.

7 CONCLUSION
While many publications feature nano-machinery, few specify the

incorporated computational model for the chosen nano-machine.

The provided key information often consists of the rather vague

“resource constraint”-term. This paper attempts to close the gap by

analyzing the tasks to be performed by a nano-machine in numerous

medical scenarios. The determined problems are sorted into the

three very constrained complexity classes AC0
, NC1

and L, thereby

taking the immense resource constraints into account.

The chosen complexity class yields the minimum capabilities

required for the nano-machine, as well as the other readily available

capabilities. If the machine resembles a speci�c type of circuit or

L-Turing machine or is able to emulate them, the whole catalog of

problems contained in the respective class and contained classes

(see Table 1) is likely computable by the same machine, or a similar

machine may be constructed.

However, the chosen complexity classes may not represent actual

nano-machine implementations suitably. Additional components

and operations for communication, input/output-handling, storage

or clocking might be necessary, while not being adequately re�ected

by circuits or Turing machines.

Further, to fully determine the complexity of a nano-machine,

one has to also consider the possible combination of operations

into algorithms. An algorithm might require an operation to be

performed linearly or more often in succession, perhaps exceeding

the capability of the class of the operation.

Additionally, more complexity classes can be considered, further

populating Figure 1, thereby specifying the complexity of opera-

tions even more precisely.

REFERENCES
[1] Ian F. Akyildiz, Fernando Brunetti, and Cristina Blázquez. 2008. Nanonetworks:

A new communication paradigm. Computer Networks 52, 12 (2008), 2260 – 2279.

[2] Ian F. Akyildiz, Josep Miquel Jornet, and Massimiliano Pierobon. 2011. Nanonet-

works: A New Frontier in Communications. Commun. ACM 54, 11 (Nov. 2011),

84–89.

[3] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and

Sambuddha Roy. 2009. Planar and Grid Graph Reachability Problems. Theory of
Computing Systems 45, 4 (2009), 675–723.

[4] C. Alvarez and R. Greenlaw. 2000. A compendium of problems complete for

symmetric logarithmic space. computational complexity 9, 2 (2000), 123–145.

[5] Paolo Amato, Massimo Masserini, Giancarlo Mauri, and Gianfranco Cerofolini.

2010. Early-Stage Diagnosis of Endogenous Diseases by Swarms of Nanobots: An
Applicative Scenario. Springer Berlin Heidelberg, Berlin, Heidelberg, 408–415.

[6] J Christopher Anderson, Elizabeth J Clarke, Adam P Arkin, and Christopher A

Voigt. 2006. Environmentally controlled invasion of cancer cells by engineered

bacteria. Journal of molecular biology 355, 4 (2006), 619–627.

[7] Sanjeev Arora and Boaz Barak. 2009. Computational complexity: a modern ap-
proach. Cambridge University Press.

[8] B. Atakan, O. B. Akan, and S. Balasubramaniam. 2012. Body area nanonet-

works with molecular communications in nanomedicine. IEEE Communications
Magazine 50, 1 (January 2012), 28–34.

[9] Yaakov Benenson, Binyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro.

2004. An autonomous molecular computer for logical control of gene expression.

Nature 429, 6990 (27 May 2004), 423–429.

[10] Chiu, Andrew, Davida, George, and Litow, Bruce. 2001. Division in logspace-

uniform NC1. RAIRO-Theor. Inf. Appl. 35, 3 (2001), 259–275.

[11] Luis C Cobo and Ian F Akyildiz. 2010. Bacteria-based communication in nanonet-

works. Nano Communication Networks 1, 4 (2010), 244–256.

[12] Stephen A Cook and Pierre McKenzie. 1987. Problems complete for deterministic

logarithmic space. Journal of Algorithms 8, 3 (1987), 385 – 394.

[13] Robert A Freitas. 2005. Current status of nanomedicine and medical nanorobotics.

Journal of Computational and Theoretical Nanoscience 2, 1 (2005), 1–25.

[14] Siavash Ghavami, Farshad Lahouti, and Ali Masoudi-Nejad. 2012. Modeling

and analysis of abnormality detection in biomolecular nano-networks. Nano
Communication Networks 3, 4 (2012), 229–241.

[15] Zhen Gu, Alex A Aimetti, Qun Wang, Tram T Dang, Yunlong Zhang, Omid

Veiseh, Hao Cheng, Robert S Langer, and Daniel G Anderson. 2013. Injectable

nano-network for glucose-mediated insulin delivery. ACS nano 7, 5 (2013),

4194–4201.

[16] N. Immerman and S. Landau. 1995. The Complexity of Iterated Multiplication.

Information and Computation 116, 1 (1995), 103 – 116.

[17] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. 2003. Com-

pleteness results for graph isomorphism. J. Comput. System Sci. 66, 3 (2003), 549

– 566.

[18] Alec A.K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant Vaidyanathan, Vanya

Paralanov, Elizabeth A. Strychalski, David Ross, Douglas Densmore, and Christo-

pher A. Voigt. 2016. Genetic circuit design automation. Science 352, 6281 (2016),

aac7341.

[19] A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider. 1997. Realiza-

tion of a Functional Cell for Quantum-Dot Cellular Automaton. Science 277 (8

1997), 928–930.

[20] Prof. Dr. Evangelos Kranakis (auth.) Prof. Dr. Peter Clote. 2002. Boolean Functions
and Computation Models (1 ed.). Springer-Verlag Berlin Heidelberg.

[21] Walter J. Savitch. 1970. Relationships between nondeterministic and determinis-

tic tape complexities. J. Comput. System Sci. 4, 2 (1970), 177 – 192.

[22] Sunil Singhal, Shuming Nie, and May D Wang. 2010. Nanotechnology applica-

tions in surgical oncology. Annual review of medicine 61 (2010), 359–373.

[23] Mark Staples, Karen Daniel, Michael J. Cima, and Robert Langer. 2006. Applica-

tion of Micro- and Nano-Electromechanical Devices to Drug Delivery. Pharma-
ceutical Research 23, 5 (2006), 847–863.

[24] Marc Stelzner, Florian-Lennert Lau, Katja Freundt, Florian Büther, Mai Linh

Nguyen, Cordula Stamme, and Sebastian Ebers. 2016. Precise Detection and

Treatment of Human Diseases Based on Nano Networking. In 11th International
Conference on Body Area Networks (BODYNETS 2016). EAI, Turin, Italy.

[25] Ageliki Tsioliaridou, Christos Liaskos, Sotiris Ioannidis, and Andreas Pitsillides.

2015. CORONA: A Coordinate and Routing System for Nanonetworks. In Pro-
ceedings of the Second Annual International Conference on Nanoscale Computing
and Communication (NANOCOM’ 15). ACM, New York, NY, USA, Article 18,

6 pages.

[26] Heribert Vollmer. 1999. The NC Hierarchy. Springer Berlin Heidelberg, Berlin,

Heidelberg, 107–171.

[27] Avi Wigderson. 1992. The complexity of graph connectivity. In International
Symposium on Mathematical Foundations of Computer Science. Springer, 112–132.

[28] Hang Yu, Bryan Ng, and Winston K. G. Seah. 2015. Forwarding Schemes for

EM-based Wireless Nanosensor Networks in the Terahertz Band. In Proceed-
ings of the Second Annual International Conference on Nanoscale Computing and
Communication (NANOCOM’ 15). ACM, New York, NY, USA, Article 17, 6 pages.

	Abstract
	1 Introduction
	2 Proposed Tasks for Nano-Machines
	3 From Scenarios To Problems
	3.1 Arithmetic and Logical Operators
	3.2 Pattern Matching and Parity
	3.3 Communication
	3.4 Complex Operations
	3.5 Storage
	3.6 Time

	4 Preliminaries For Computational Complexity
	5 From Problems to Complexity Classes
	5.1 A Problem Compendium
	5.2 Problems of Unknown Complexity

	6 Applications to Nano-Machine Design
	6.1 Circuit-Based Implementations
	6.2 Space-Constrained Turing Machines

	7 Conclusion
	References

